GTT-Net: Learned Generalized Trajectory Triangulation

Xiangyu Xu, Enrique Dunn

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

We present GTT-Net, a supervised learning framework for the reconstruction of sparse dynamic 3D geometry. We build on a graph-theoretic formulation of the generalized trajectory triangulation problem, where non-concurrent multi-view imaging geometry is known but global image sequencing is not provided. GTT-Net learns pairwise affinities modeling the spatio-temporal relationships among our input observations and leverages them to determine 3D geometry estimates. Experiments reconstructing 3D motion-capture sequences show GTT-Net outperforms the state of the art in terms of accuracy and robustness. Within the context of articulated motion reconstruction, our proposed architecture is 1) able to learn and enforce semantic 3D motion priors for shared training and test domains, while being 2) able to generalize its performance across different training and test domains. Moreover, GTT-Net provides a computationally streamlined framework for trajectory triangulation with applications to multi-instance reconstruction and event segmentation.

Original languageEnglish
Title of host publicationProceedings - 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021
Pages5775-5784
Number of pages10
ISBN (Electronic)9781665428125
DOIs
StatePublished - 2021
Event18th IEEE/CVF International Conference on Computer Vision, ICCV 2021 - Virtual, Online, Canada
Duration: 11 Oct 202117 Oct 2021

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
ISSN (Print)1550-5499

Conference

Conference18th IEEE/CVF International Conference on Computer Vision, ICCV 2021
Country/TerritoryCanada
CityVirtual, Online
Period11/10/2117/10/21

Fingerprint

Dive into the research topics of 'GTT-Net: Learned Generalized Trajectory Triangulation'. Together they form a unique fingerprint.

Cite this