TY - JOUR
T1 - Hierarchical model reduction of nonlinear partial differential equations based on the adaptive empirical projection method and reduced basis techniques
AU - Smetana, Kathrin
AU - Ohlberger, Mario
N1 - Publisher Copyright:
© EDP Sciences, SMAI 2017.
PY - 2017/3/1
Y1 - 2017/3/1
N2 - In this paper we extend the hierarchical model reduction framework based on reduced basis techniques recently introduced in [M. Ohlberger and K. Smetana, SIAM J. Sci. Comput. 36 (2014) A714-A736] for the application to nonlinear partial differential equations. The major new ingredient to accomplish this goal is the introduction of the adaptive empirical projection method, which is an adaptive integration algorithm based on the (generalized) empirical interpolation method [M. Barrault, et al., C. R. Math. Acad. Sci. Paris Series I 339 (2004) 667-672; Y. Maday and O. Mula, A generalized empirical interpolation method: Application of reduced basis techniques to data assimilation. In Analysis and Numerics of Partial Differential Equations. Vol. 4 of Springer INdAM Series. Springer Milan (2013) 221-235]. Different from other partitioning concepts for the empirical interpolation method we perform an adaptive decomposition of the spatial domain. We project both the variational formulation and the range of the nonlinear operator onto reduced spaces. Those reduced spaces combine the full dimensional (finite element) space in an identified dominant spatial direction and a reduction space or collateral basis space spanned by modal orthonormal basis functions in the transverse direction. Both the reduction and the collateral basis space are constructed in a highly nonlinear fashion by introducing a parametrized problem in the transverse direction and associated parametrized operator evaluations, and by applying reduced basis methods to select the bases from the corresponding snapshots. Rigorous a priori and a posteriori error estimators, which do not require additional regularity of the nonlinear operator are proven for the adaptive empirical projection method and then used to derive a rigorous a posteriori error estimator for the resulting hierarchical model reduction approach. Numerical experiments for an elliptic nonlinear diffusion equation demonstrate a fast convergence of the proposed dimensionally reduced approximation to the solution of the full-dimensional problem. Runtime experiments verify a close to linear scaling of the reduction method in the number of degrees of freedom used for the computations in the dominant direction.
AB - In this paper we extend the hierarchical model reduction framework based on reduced basis techniques recently introduced in [M. Ohlberger and K. Smetana, SIAM J. Sci. Comput. 36 (2014) A714-A736] for the application to nonlinear partial differential equations. The major new ingredient to accomplish this goal is the introduction of the adaptive empirical projection method, which is an adaptive integration algorithm based on the (generalized) empirical interpolation method [M. Barrault, et al., C. R. Math. Acad. Sci. Paris Series I 339 (2004) 667-672; Y. Maday and O. Mula, A generalized empirical interpolation method: Application of reduced basis techniques to data assimilation. In Analysis and Numerics of Partial Differential Equations. Vol. 4 of Springer INdAM Series. Springer Milan (2013) 221-235]. Different from other partitioning concepts for the empirical interpolation method we perform an adaptive decomposition of the spatial domain. We project both the variational formulation and the range of the nonlinear operator onto reduced spaces. Those reduced spaces combine the full dimensional (finite element) space in an identified dominant spatial direction and a reduction space or collateral basis space spanned by modal orthonormal basis functions in the transverse direction. Both the reduction and the collateral basis space are constructed in a highly nonlinear fashion by introducing a parametrized problem in the transverse direction and associated parametrized operator evaluations, and by applying reduced basis methods to select the bases from the corresponding snapshots. Rigorous a priori and a posteriori error estimators, which do not require additional regularity of the nonlinear operator are proven for the adaptive empirical projection method and then used to derive a rigorous a posteriori error estimator for the resulting hierarchical model reduction approach. Numerical experiments for an elliptic nonlinear diffusion equation demonstrate a fast convergence of the proposed dimensionally reduced approximation to the solution of the full-dimensional problem. Runtime experiments verify a close to linear scaling of the reduction method in the number of degrees of freedom used for the computations in the dominant direction.
KW - A posteriori error estimation
KW - Dimensional reduction
KW - Empirical interpolation
KW - Finite elements
KW - Hierarchical model reduction
KW - Nonlinear partial differential equations
KW - Reduced basis methods
UR - http://www.scopus.com/inward/record.url?scp=85014003255&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85014003255&partnerID=8YFLogxK
U2 - 10.1051/m2an/2016031
DO - 10.1051/m2an/2016031
M3 - Article
AN - SCOPUS:85014003255
SN - 2822-7840
VL - 51
SP - 641
EP - 677
JO - ESAIM: Mathematical Modelling and Numerical Analysis
JF - ESAIM: Mathematical Modelling and Numerical Analysis
IS - 2
ER -