High-frequency single-photon source with polarization control

Stefan Strauf, Nick G. Stoltz, Matthew T. Rakher, Larry A. Coldren, Pierre M. Petroff, Dirk Bouwmeester

Research output: Contribution to journalArticlepeer-review

357 Scopus citations

Abstract

Optoelectronic devices that provide non-classical light states on demand have a broad range of applications in quantum information science, including quantumkeydistribution systems, quantum lithography and quantum computing. Single-photon sources in particular have been demonstrated to outperform key distribution based on attenuated classical laser pulses. Implementations based on individual molecules, nitrogen vacancy centres or dopant atoms are rather inefficient owing to low emission rates, rapid saturation and the lack of mature cavity technology. Promising single-photon-source designs combine high-quality microcavities with quantum dots as active emitters. So far, the highest measured single-photon rates are 200kHz using etched micropillars. Here, we demonstrate a quantum-dot-based single-photon source with a measured single-photon emission rate of 4.0MHz (31MHz into the first lens, with an extraction efficiency of 38) due to the suppression of exciton dark states. Furthermore, our microcavity design provides mechanical stability, and voltage-controlled tuning of the emittermode resonance and of the polarization state.

Original languageEnglish
Pages (from-to)704-708
Number of pages5
JournalNature Photonics
Volume1
Issue number12
DOIs
StatePublished - Dec 2007

Fingerprint

Dive into the research topics of 'High-frequency single-photon source with polarization control'. Together they form a unique fingerprint.

Cite this