TY - JOUR
T1 - High-frequency single-photon source with polarization control
AU - Strauf, Stefan
AU - Stoltz, Nick G.
AU - Rakher, Matthew T.
AU - Coldren, Larry A.
AU - Petroff, Pierre M.
AU - Bouwmeester, Dirk
PY - 2007/12
Y1 - 2007/12
N2 - Optoelectronic devices that provide non-classical light states on demand have a broad range of applications in quantum information science, including quantumkeydistribution systems, quantum lithography and quantum computing. Single-photon sources in particular have been demonstrated to outperform key distribution based on attenuated classical laser pulses. Implementations based on individual molecules, nitrogen vacancy centres or dopant atoms are rather inefficient owing to low emission rates, rapid saturation and the lack of mature cavity technology. Promising single-photon-source designs combine high-quality microcavities with quantum dots as active emitters. So far, the highest measured single-photon rates are 200kHz using etched micropillars. Here, we demonstrate a quantum-dot-based single-photon source with a measured single-photon emission rate of 4.0MHz (31MHz into the first lens, with an extraction efficiency of 38) due to the suppression of exciton dark states. Furthermore, our microcavity design provides mechanical stability, and voltage-controlled tuning of the emittermode resonance and of the polarization state.
AB - Optoelectronic devices that provide non-classical light states on demand have a broad range of applications in quantum information science, including quantumkeydistribution systems, quantum lithography and quantum computing. Single-photon sources in particular have been demonstrated to outperform key distribution based on attenuated classical laser pulses. Implementations based on individual molecules, nitrogen vacancy centres or dopant atoms are rather inefficient owing to low emission rates, rapid saturation and the lack of mature cavity technology. Promising single-photon-source designs combine high-quality microcavities with quantum dots as active emitters. So far, the highest measured single-photon rates are 200kHz using etched micropillars. Here, we demonstrate a quantum-dot-based single-photon source with a measured single-photon emission rate of 4.0MHz (31MHz into the first lens, with an extraction efficiency of 38) due to the suppression of exciton dark states. Furthermore, our microcavity design provides mechanical stability, and voltage-controlled tuning of the emittermode resonance and of the polarization state.
UR - http://www.scopus.com/inward/record.url?scp=36749067405&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=36749067405&partnerID=8YFLogxK
U2 - 10.1038/nphoton.2007.227
DO - 10.1038/nphoton.2007.227
M3 - Article
AN - SCOPUS:36749067405
SN - 1749-4885
VL - 1
SP - 704
EP - 708
JO - Nature Photonics
JF - Nature Photonics
IS - 12
ER -