Hypocycloid gear mechanism versus slider-crank mechanism in engines

Mostafa A. ElBahloul, ELsayed S. Aziz, Constantin Chassapis

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

This effort investigates the feasibility of using the Hypocycloid Gear Mechanism (HGM) as an alternative to the conventional slider-crank mechanism for Internal Combustion Engine (ICE) applications. Engines incorporating the conventional slider-crank mechanism are subjected to high frictional power losses mainly due to the piston-rod assembly and the associated complex motion of the connecting rod. The unique HGM engine provides the means for the piston-rod assembly to reciprocate in a straight-line motion along the cylinder axis, thus eliminating the piston side-thrusting into the cylinder wall. To analyze the performance advantages of the HGM engine, a Matlab/Simulink model is developed for the simulation of a single-cylinder HGM engine from the throttle to the crankshaft output. The model integrates several sub-models for combustion, gas flow, heat transfer, and friction power loss of the internal gear train meshes, rolling bearings, and sliding bearings. The design of the planetary crank gearing system to satisfy the design specifications of ICE, has been derived using standard design procedures provided by AGMA. Calculated efficiency and power diagrams are plotted and compared with the performance of conventional engines in the literature. The results show that the HGM can satisfy modern ICE design requirements, achieve better engine performance characteristics, and minimize the frictional power losses. The HGM engine achieved lower frictional power losses by an average 33% of the conventional engine losses while its mechanical efficiency is enhanced by up to +24% with respect to the conventional engine.

Original languageEnglish
Title of host publication2019 International Power Transmission and Gearing Conference
ISBN (Electronic)9780791859308
DOIs
StatePublished - 2019
EventASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC-CIE 2019 - Anaheim, United States
Duration: 18 Aug 201921 Aug 2019

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
Volume10

Conference

ConferenceASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC-CIE 2019
Country/TerritoryUnited States
CityAnaheim
Period18/08/1921/08/19

Keywords

  • Frictional losses
  • Hypocycloid gear mechanism
  • Internal combustion engines
  • Mechanical efficiency
  • Planetary gears

Fingerprint

Dive into the research topics of 'Hypocycloid gear mechanism versus slider-crank mechanism in engines'. Together they form a unique fingerprint.

Cite this