In situ gelling polysaccharide-based hydrogel for cell and drug delivery in tissue engineering

Yixing Cheng, Ahmed A. Nada, Chandra M. Valmikinathan, Paul Lee, Danni Liang, Xiaojun Yu, Sangamesh G. Kumbar

Research output: Contribution to journalArticlepeer-review

43 Scopus citations

Abstract

Injectable hydrogels have attracted a great deal of attention as cell carriers and bioactive agents in regenerative medicine due to their ability to fill complex three-dimensional (3D) tissue gaps and relative ease of in vivo administration. Polysaccharide-based hydrogels can provide microenvironments that favor tissue regeneration and biocompatibility due to their chemical similarities with native extracellular matrix components. This manuscript reports the in vitro application of an injectable chitosan-based polysaccharide hydrogel for cell and protein delivery. Crosslinked hydrogels were produced by the reaction between the amino functionality of chitosan and the aldehyde of dextran aldehyde resulting in an imine bond (Schiff's base) formation in aqueous solutions. This approach eliminated the use of additional crosslinking agents which may pose undesired side effects regarding cytotoxicity and biocompatibility. Additionally, we demonstrate versatility of the gel in terms of its fabrication, and ability to alter mechanical properties by changing the crosslinking extent due to aldehyde content. Bovine serum albumin (BSA), used as a model protein, followed a steady release pattern from the gel. BSA release was dependent on the extent of hydrogel crosslinking. Increase in crosslinking extent resulted in improved mechanical properties and sustained release of BSA. Human fetal osteoblasts encapsulated into the hydrogel showed at least 70% viability and continued to proliferate under in vitro culture.

Original languageEnglish
Article number39934
JournalJournal of Applied Polymer Science
Volume131
Issue number4
DOIs
StatePublished - 15 Feb 2014

Keywords

  • biodegradable
  • biomaterials
  • drug delivery systems
  • gels
  • polysaccharides

Fingerprint

Dive into the research topics of 'In situ gelling polysaccharide-based hydrogel for cell and drug delivery in tissue engineering'. Together they form a unique fingerprint.

Cite this