TY - GEN
T1 - Incorporating environmental information into underwater acoustic sensor coverage estimation in estuaries
AU - Shi, Hongyuan
AU - Kruger, Dov
AU - Nickerson, Jeffrey V.
PY - 2007
Y1 - 2007
N2 - Monitoring underwater environments is challenging. Terrestrial and aerial surveillance technology cannot be adopted directly since optical and electromagnetic waves have extremely high attenuation in water. Most existing underwater detection technologies rely upon sound waves as sound can travel a relatively long distance in water. However underwater sound propagation is highly susceptible to interference depending on the water conditions. Sharp gradients in salinity and temperature cause sound to refract and reflect. Thus the listening range, or coverage, of a sound detector is largely influenced by the underwater environment. This effect is particularly prominent in an estuary where fresh water mixes with sea water, and tidal action causes significant current changes. We study the behavior of estuary water conditions and attempt to characterize the acoustic sensor coverage in an estuary. We use environmental data extracted from the NYHOPSforecast model. Acoustic conditions in water are evaluated based on sound speed variation. Based on scans over a ten-month period, we characterize the impacts from major environmental factors on underwater sound propagation. We further calculate sound transmission loss for typical water conditions and analyze the variation of sensing range for underwater sound detectors.
AB - Monitoring underwater environments is challenging. Terrestrial and aerial surveillance technology cannot be adopted directly since optical and electromagnetic waves have extremely high attenuation in water. Most existing underwater detection technologies rely upon sound waves as sound can travel a relatively long distance in water. However underwater sound propagation is highly susceptible to interference depending on the water conditions. Sharp gradients in salinity and temperature cause sound to refract and reflect. Thus the listening range, or coverage, of a sound detector is largely influenced by the underwater environment. This effect is particularly prominent in an estuary where fresh water mixes with sea water, and tidal action causes significant current changes. We study the behavior of estuary water conditions and attempt to characterize the acoustic sensor coverage in an estuary. We use environmental data extracted from the NYHOPSforecast model. Acoustic conditions in water are evaluated based on sound speed variation. Based on scans over a ten-month period, we characterize the impacts from major environmental factors on underwater sound propagation. We further calculate sound transmission loss for typical water conditions and analyze the variation of sensing range for underwater sound detectors.
UR - http://www.scopus.com/inward/record.url?scp=47949127437&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=47949127437&partnerID=8YFLogxK
U2 - 10.1109/MILCOM.2007.4454986
DO - 10.1109/MILCOM.2007.4454986
M3 - Conference contribution
AN - SCOPUS:47949127437
SN - 1424415136
SN - 9781424415137
T3 - Proceedings - IEEE Military Communications Conference MILCOM
BT - Military Communications Conference, MILCOM 2007
T2 - Military Communications Conference, MILCOM 2007
Y2 - 29 October 2007 through 31 October 2007
ER -