Incorporation of joint flexibility with link flexibility: dynamic modeling and analysis

Degao Li, Jean W. Zu, Andrew A. Goldenberg

Research output: Chapter in Book/Report/Conference proceedingChapterpeer-review

Abstract

Flexible robots with both link flexibility and joint flexibility have received increasing attention recently. In modeling the flexible robots with the assumed mode method, the model accuracy is highly dependent on the mode shapes of the link deflection. For flexible-link, flexible-joint robots, conventionally used clamped-free or pinned-free modes may cause large errors. To address this problem, this paper presents a systematic approach to dynamic modeling and mode analysis of a single-link flexible robot, which has a flexible joint and a hub at the base end and a payload at the free end. Accurate modes of the system are obtained. The following important conclusions are obtained: (1) Even a small joint flexibility can significantly affect the system frequencies; (2) The fundamental frequency is sensitive to the change in the payload and is not sensitive to the change in the hub inertia.

Original languageEnglish
Title of host publication15th Biennial Conference on Mechanical Vibration and Noise
EditorsK.W. Wang, B. Yang, J.Q. Sun, K. Seto, K. Yoshida, al et al
Edition3 Pt C
StatePublished - 1995
EventProceedings of the 1995 ASME Design Engineering Technical Conference. Part C - Boston, MA, USA
Duration: 17 Sep 199520 Sep 1995

Publication series

NameAmerican Society of Mechanical Engineers, Design Engineering Division (Publication) DE
Number3 Pt C
Volume84

Conference

ConferenceProceedings of the 1995 ASME Design Engineering Technical Conference. Part C
CityBoston, MA, USA
Period17/09/9520/09/95

Fingerprint

Dive into the research topics of 'Incorporation of joint flexibility with link flexibility: dynamic modeling and analysis'. Together they form a unique fingerprint.

Cite this