Abstract
A new multidisciplinary design and optimization methodology in electronics packaging is presented. A genetic algorithm combined with multi-disciplinary design and multi-physics analysis tools are used to optimize key design parameters. This methodology is developed to improve the electronic package design process by performing multidisciplinary design and optimization at an early design stage. To demonstrate its capability, the methodology is applied to a Ball Grid Array (BGA) package design. Multidisciplinary criteria including thermal, thermal strain, electromagnetic leakage, and cost are optimized simultaneously. A simplified routability analysis criterion is treated as a constraint. The genetic algorithm is used for systematic design optimization while reducing the total computational time. The present methodology can be applied to any electronics product design at any packaging level from the chip level to the system level.
Original language | English |
---|---|
Pages | 495-502 |
Number of pages | 8 |
DOIs | |
State | Published - 2004 |
Event | Proceedings of the ASME Heat Transfer/Fluids Engineering Summer Conference 2004, HT/FED 2004 - Charlotte, NC, United States Duration: 11 Jul 2004 → 15 Jul 2004 |
Conference
Conference | Proceedings of the ASME Heat Transfer/Fluids Engineering Summer Conference 2004, HT/FED 2004 |
---|---|
Country/Territory | United States |
City | Charlotte, NC |
Period | 11/07/04 → 15/07/04 |