TY - JOUR
T1 - Integrated X-ray photoelectron spectroscopy and DFT characterization of benzene adsorption on Pt(111), Pt(355) and Pt(322) surfaces
AU - Zhang, Renqin
AU - Hensley, Alyssa J.
AU - McEwen, Jean Sabin
AU - Wickert, Sandra
AU - Darlatt, Erik
AU - Fischer, Kristina
AU - Schöppke, Matthias
AU - Denecke, Reinhard
AU - Streber, Regine
AU - Lorenz, Michael
AU - Papp, Christian
AU - Steinrück, Hans Peter
PY - 2013/12/21
Y1 - 2013/12/21
N2 - We systematically investigate the adsorption of benzene on Pt(111), Pt(355) and Pt(322) surfaces by high-resolution X-ray photoelectron spectroscopy (XPS) and first-principle calculations based on density functional theory (DFT), including van der Waals corrections. By comparing the adsorption energies at 1/9, 1/16 and 1/25 ML on Pt(111), we find significant lateral interactions exist between the benzene molecules at 1/9 ML. The adsorption behavior on Pt(355) and Pt(322) is very different. While on Pt(355) a step species is clearly identified in the C 1s spectra at low coverages followed by occupation of a terrace species at high coverages, no evidence for a step species is found on Pt(322). These different adsorption sites are confirmed by extensive DFT calculations, where the most favorable adsorption configurations on Pt(355) and Pt(322) are also found to vary: a highly distorted across the step molecule is found on Pt(355) while a less distorted configuration adjacent to the step molecule is deduced for Pt(322). The theoretically proposed C 1s core level binding energy shifts between these most favorable configurations and the terrace species are found to correlate well with experiment: for Pt(355), two adsorbate states are found, separated by ∼0.4 eV in XPS and 0.3 eV in the calculations, in contrast to only one state on Pt(322).
AB - We systematically investigate the adsorption of benzene on Pt(111), Pt(355) and Pt(322) surfaces by high-resolution X-ray photoelectron spectroscopy (XPS) and first-principle calculations based on density functional theory (DFT), including van der Waals corrections. By comparing the adsorption energies at 1/9, 1/16 and 1/25 ML on Pt(111), we find significant lateral interactions exist between the benzene molecules at 1/9 ML. The adsorption behavior on Pt(355) and Pt(322) is very different. While on Pt(355) a step species is clearly identified in the C 1s spectra at low coverages followed by occupation of a terrace species at high coverages, no evidence for a step species is found on Pt(322). These different adsorption sites are confirmed by extensive DFT calculations, where the most favorable adsorption configurations on Pt(355) and Pt(322) are also found to vary: a highly distorted across the step molecule is found on Pt(355) while a less distorted configuration adjacent to the step molecule is deduced for Pt(322). The theoretically proposed C 1s core level binding energy shifts between these most favorable configurations and the terrace species are found to correlate well with experiment: for Pt(355), two adsorbate states are found, separated by ∼0.4 eV in XPS and 0.3 eV in the calculations, in contrast to only one state on Pt(322).
UR - http://www.scopus.com/inward/record.url?scp=84887936073&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84887936073&partnerID=8YFLogxK
U2 - 10.1039/c3cp53127a
DO - 10.1039/c3cp53127a
M3 - Article
AN - SCOPUS:84887936073
SN - 1463-9076
VL - 15
SP - 20662
EP - 20671
JO - Physical Chemistry Chemical Physics
JF - Physical Chemistry Chemical Physics
IS - 47
ER -