Intravenous sulforhodamine B reduces alveolar surface tension, improves oxygenation, and reduces ventilation injury in a respiratory distress model

You Wu, Tam L. Ngyuen, Carrie E. Perlman

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

In the neonatal respiratory distress syndrome (NRDS) and acute respiratory distress syndrome (ARDS), mechanical ventilation supports gas exchange but can cause ventilation-induced lung injury (VILI) that contributes to high mortality. Further, surface tension, T, should be elevated and VILI is proportional to T. Surfactant therapy is effective in NRDS but not ARDS. Sulforhodamine B (SRB) is a potential alternative T-lowering therapeutic. In anesthetized male rats, we injure the lungs with 15 min of 42 mL/kg tidal volume, VT, and zero end-expiratory pressure ventilation. Then, over 4 h, we support the rats with protective ventilation-VT of 6 mL/kg with positive end-expiratory pressure. At the start of the support period, we administer intravenous non-T-altering fluorescein (targeting 27 mM in plasma) without or with therapeutic SRB (10 nM). Throughout the support period, we increase inspired oxygen fraction, as necessary, to maintain >90% arterial oxygen saturation. At the end of the support period, we euthanize the rat; sample systemic venous blood for injury marker ELISAs; excise the lungs; combine confocal microscopy and servo-nulling pressure measurement to determine T in situ in the lungs; image fluorescein in alveolar liquid to assess local permeability; and determine lavage protein content and wet-to-dry ratio (W/D) to assess global permeability. Lungs exhibit focal injury. Surface tension is elevated 72% throughout control lungs and in uninjured regions of SRB-treated lungs, but normal in injured regions of treated lungs. SRB administration improves oxygenation, reduces W/D, and reduces plasma injury markers. Intravenous SRB holds promise as a therapy for respiratory distress. NEW & NOTEWORTHY Sulforhodmaine B lowers T in alveolar edema liquid. Given the problematic intratracheal delivery of surfactant therapy for ARDS, intravenous SRB might constitute an alternative therapeutic. In a lung injury model, we find that intravenously administered SRB crosses the injured alveolar-capillary barrier thus reduces T specifically in injured lung regions; improves oxygenation; and reduces the degree of further lung injury. Intravenous SRB administration might help respiratory distress patients, including those with the novel coronavirus, avoid mechanical ventilation or, once ventilated, survive.

Original languageEnglish
Pages (from-to)1305-1316
Number of pages12
JournalJournal of Applied Physiology
Volume130
Issue number5
DOIs
StatePublished - May 2021

Keywords

  • Acute respiratory distress syndrome
  • Neonatal respiratory distress syndrome
  • Oxygenation
  • Surface tension
  • Ventilation-induced lung injury

Fingerprint

Dive into the research topics of 'Intravenous sulforhodamine B reduces alveolar surface tension, improves oxygenation, and reduces ventilation injury in a respiratory distress model'. Together they form a unique fingerprint.

Cite this