Junction inference and classification for figure completion using tensor voting

Philippos Mordohai, Gérard Medioni

Research output: Contribution to journalConference articlepeer-review

11 Scopus citations

Abstract

We address the issues associated with figure completion, a perceptual grouping task. Endpoints and junctions play a critical role in contour completion by the human visual system and should be an integral part of a computational process that attempts to emulate human perception. A significant body of evidence in the psychology literature points to two types of completion, modal (or orthogonal) and amodal (or parallel). We provide a computational framework which implements both types of completion and integrates a fully automatic decision making mechanism for selecting between them. It proceeds directly from tokens or binary image input, infers descriptions in terms of overlapping layers and labels junctions as T, L and endpoints. It is based on first and second order tensor voting, which facilitate the propagation of local support among tokens. The addition of first order information to the original framework is crucial, since it makes the inference of endpoints and the labeling of junctions possible. We illustrate the approach on several classical inputs, producing interpretations consistent with those of the human visual system.

Original languageEnglish
Article number1384848
JournalIEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
Volume2004-January
Issue numberJanuary
DOIs
StatePublished - 2004
Event2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2004 - Washington, United States
Duration: 27 Jun 20042 Jul 2004

Fingerprint

Dive into the research topics of 'Junction inference and classification for figure completion using tensor voting'. Together they form a unique fingerprint.

Cite this