Latent domains modeling for visual domain adaptation

Caiming Xiong, Scott McCloskey, Shao Hang Hsieh, Jason J. Corso

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

17 Scopus citations

Abstract

To improve robustness to significant mismatches between source domain and target domain - Arising from changes such as illumination, pose and image quality - domain adaptation is increasingly popular in computer vision. But most of methods assume that the source data is from single domain, or that multi-domain datasets provide the domain label for training instances. In practice, most datasets are mixtures of multiple latent domains, and difficult to manually provide the domain label of each data point. In this paper, we propose a model that automatically discovers latent domains in visual datasets. We first assume the visual images are sampled from multiple manifolds, each of which represents different domain, and which are represented by different subspaces. Using the neighborhood structure estimated from images belonging to the same category, we approximate the local linear invariant subspace for each image based on its local structure, eliminating the category-specific elements of the feature. Based on the effectiveness of this representation, we then propose a squared-loss mutual information based clustering model with category distribution prior in each domain to infer the domain assignment for images. In experiment, we test our approach on two common image datasets, the results show that our method outperforms the existing state-of-the-art methods, and also show the superiority of multiple latent domain discovery.

Original languageEnglish
Title of host publicationProceedings of the National Conference on Artificial Intelligence
Pages2860-2866
Number of pages7
ISBN (Electronic)9781577356806
StatePublished - 2014
Event28th AAAI Conference on Artificial Intelligence, AAAI 2014, 26th Innovative Applications of Artificial Intelligence Conference, IAAI 2014 and the 5th Symposium on Educational Advances in Artificial Intelligence, EAAI 2014 - Quebec City, Canada
Duration: 27 Jul 201431 Jul 2014

Publication series

NameProceedings of the National Conference on Artificial Intelligence
Volume4

Conference

Conference28th AAAI Conference on Artificial Intelligence, AAAI 2014, 26th Innovative Applications of Artificial Intelligence Conference, IAAI 2014 and the 5th Symposium on Educational Advances in Artificial Intelligence, EAAI 2014
Country/TerritoryCanada
CityQuebec City
Period27/07/1431/07/14

Fingerprint

Dive into the research topics of 'Latent domains modeling for visual domain adaptation'. Together they form a unique fingerprint.

Cite this