TY - JOUR
T1 - Liquid Crystal Nanoparticle Conjugates for Scavenging Reactive Oxygen Species in Live Cells
AU - Nag, Okhil K.
AU - Naciri, Jawad
AU - Lee, Kwahun
AU - Oh, Eunkeu
AU - Almeida, Bethany
AU - Delehanty, James B.
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/5
Y1 - 2022/5
N2 - The elevated intracellular production of or extracellular exposure to reactive oxygen species (ROS) causes oxidative stress to cells, resulting in deleterious irreversible biomolecular reactions (e.g., lipid peroxidation) and disease progression. The use of low-molecular weight antioxidants, such as 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), as ROS scavengers fails to achieve the desired efficacy because of their poor or uncontrolled cellular uptake and off-target effects, such as dysfunction of essential redox homeostasis. In this study, we fabricated a liquid crystal nanoparticle (LCNP) conjugate system with the fluorescent dye perylene (PY) loaded in the interior and poly (ethylene glycol) (PEG) decorated on the surface along with multiple molecules of TEMPO (PY-LCNP-PEG/TEMPO). PY-LCNP-PEG/TEMPO exhibit enhanced cellular uptake, and efficient ROS-scavenging activity in live cells. On average, the 120 nm diameter PY-LCNPs were conjugated with >1800 molecules of TEMPO moieties on their surface. PY-LCNP-PEG/TEMPO showed significantly greater reduction in ROS activity and lipid peroxidation compared to free TEMPO when the cells were challenged with ROS generating agents, such as hydrogen peroxide (H2O2). We suggest that this is due to the increased local concentration of TEMPO molecules on the surface of the PY-LCNP-PEG/TEMPO NPs, which efficiently bind to the plasma membrane and enter cells. Overall, these results demonstrate the enhanced capability of TEMPO-conjugated LCNPs to protect live cells from oxidative stress by effectively scavenging ROS and reducing lipid peroxidation.
AB - The elevated intracellular production of or extracellular exposure to reactive oxygen species (ROS) causes oxidative stress to cells, resulting in deleterious irreversible biomolecular reactions (e.g., lipid peroxidation) and disease progression. The use of low-molecular weight antioxidants, such as 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), as ROS scavengers fails to achieve the desired efficacy because of their poor or uncontrolled cellular uptake and off-target effects, such as dysfunction of essential redox homeostasis. In this study, we fabricated a liquid crystal nanoparticle (LCNP) conjugate system with the fluorescent dye perylene (PY) loaded in the interior and poly (ethylene glycol) (PEG) decorated on the surface along with multiple molecules of TEMPO (PY-LCNP-PEG/TEMPO). PY-LCNP-PEG/TEMPO exhibit enhanced cellular uptake, and efficient ROS-scavenging activity in live cells. On average, the 120 nm diameter PY-LCNPs were conjugated with >1800 molecules of TEMPO moieties on their surface. PY-LCNP-PEG/TEMPO showed significantly greater reduction in ROS activity and lipid peroxidation compared to free TEMPO when the cells were challenged with ROS generating agents, such as hydrogen peroxide (H2O2). We suggest that this is due to the increased local concentration of TEMPO molecules on the surface of the PY-LCNP-PEG/TEMPO NPs, which efficiently bind to the plasma membrane and enter cells. Overall, these results demonstrate the enhanced capability of TEMPO-conjugated LCNPs to protect live cells from oxidative stress by effectively scavenging ROS and reducing lipid peroxidation.
KW - ROS scavenger
KW - TEMPO
KW - lipid peroxidation
KW - liquid crystal nanoparticles
KW - oxidative stress
KW - reactive oxygen species
UR - http://www.scopus.com/inward/record.url?scp=85130760785&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85130760785&partnerID=8YFLogxK
U2 - 10.3390/ph15050604
DO - 10.3390/ph15050604
M3 - Article
AN - SCOPUS:85130760785
VL - 15
JO - Pharmaceuticals
JF - Pharmaceuticals
IS - 5
M1 - 604
ER -