TY - GEN
T1 - Local Causal Discovery for Structural Evidence of Direct Discrimination
AU - Maasch, Jacqueline
AU - Gan, Kyra
AU - Chen, Violet
AU - Orfanoudaki, Agni
AU - Akpinar, Nil Jana
AU - Wang, Fei
N1 - Publisher Copyright:
Copyright © 2025, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2025/4/11
Y1 - 2025/4/11
N2 - Identifying the causal pathways of unfairness is a critical objective for improving policy design and algorithmic decision-making. Prior work in causal fairness analysis often requires knowledge of the causal graph, hindering practical applications in complex or low-knowledge domains. Moreover, global discovery methods that learn causal structure from data can display unstable performance on finite samples, preventing robust fairness conclusions. To mitigate these challenges, we introduce local discovery for direct discrimination (LD3): a method that uncovers structural evidence of direct unfairness by identifying the causal parents of an outcome variable. LD3 performs a linear number of conditional independence tests relative to variable set size, and allows for latent confounding under the sufficient condition that all parents of the outcome are observed. We show that LD3 returns a valid adjustment set (VAS) under a new graphical criterion for the weighted controlled direct effect, a qualitative indicator of direct discrimination. LD3 limits unnecessary adjustment, providing interpretable VAS for assessing unfairness. We use LD3 to analyze causal fairness in two complex decision systems: criminal recidivism prediction and liver transplant allocation. LD3 was more time-efficient and returned more plausible results on real-world data than baselines, which took 46× to 5870× longer to execute.
AB - Identifying the causal pathways of unfairness is a critical objective for improving policy design and algorithmic decision-making. Prior work in causal fairness analysis often requires knowledge of the causal graph, hindering practical applications in complex or low-knowledge domains. Moreover, global discovery methods that learn causal structure from data can display unstable performance on finite samples, preventing robust fairness conclusions. To mitigate these challenges, we introduce local discovery for direct discrimination (LD3): a method that uncovers structural evidence of direct unfairness by identifying the causal parents of an outcome variable. LD3 performs a linear number of conditional independence tests relative to variable set size, and allows for latent confounding under the sufficient condition that all parents of the outcome are observed. We show that LD3 returns a valid adjustment set (VAS) under a new graphical criterion for the weighted controlled direct effect, a qualitative indicator of direct discrimination. LD3 limits unnecessary adjustment, providing interpretable VAS for assessing unfairness. We use LD3 to analyze causal fairness in two complex decision systems: criminal recidivism prediction and liver transplant allocation. LD3 was more time-efficient and returned more plausible results on real-world data than baselines, which took 46× to 5870× longer to execute.
UR - https://www.scopus.com/pages/publications/105003905359
UR - https://www.scopus.com/inward/citedby.url?scp=105003905359&partnerID=8YFLogxK
U2 - 10.1609/aaai.v39i18.34144
DO - 10.1609/aaai.v39i18.34144
M3 - Conference contribution
AN - SCOPUS:105003905359
T3 - Proceedings of the AAAI Conference on Artificial Intelligence
SP - 19475
EP - 19483
BT - Special Track on AI Alignment
A2 - Walsh, Toby
A2 - Shah, Julie
A2 - Kolter, Zico
T2 - 39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
Y2 - 25 February 2025 through 4 March 2025
ER -