TY - GEN
T1 - Locality Sensitive Teaching
AU - Xu, Zhaozhuo
AU - Chen, Beidi
AU - Li, Chaojian
AU - Liu, Weiyang
AU - Song, Le
AU - Lin, Yingyan
AU - Shrivastava, Anshumali
N1 - Publisher Copyright:
© 2021 Neural information processing systems foundation. All rights reserved.
PY - 2021
Y1 - 2021
N2 - The emergence of the Internet-of-Things (IoT) sheds light on applying the machine teaching (MT) algorithms for online personalized education on home devices. This direction becomes more promising during the COVID-19 pandemic when in-person education becomes infeasible. However, as one of the most influential and practical MT paradigms, iterative machine teaching (IMT) is prohibited on IoT devices due to its inefficient and unscalable algorithms. IMT is a paradigm where a teacher feeds examples iteratively and intelligently based on the learner's status. In each iteration, current IMT algorithms greedily traverse the whole training set to find an example for the learner, which is computationally expensive in practice. We propose a novel teaching framework, Locality Sensitive Teaching (LST), based on locality sensitive sampling, to overcome these challenges. LST has provable near-constant time complexity, which is exponentially better than the existing baseline. With at most 425.12× speedups and 99.76% energy savings over IMT, LST is the first algorithm that enables energy and time efficient machine teaching on IoT devices. Owing to LST's substantial efficiency and scalability, it is readily applicable in real-world education scenarios.
AB - The emergence of the Internet-of-Things (IoT) sheds light on applying the machine teaching (MT) algorithms for online personalized education on home devices. This direction becomes more promising during the COVID-19 pandemic when in-person education becomes infeasible. However, as one of the most influential and practical MT paradigms, iterative machine teaching (IMT) is prohibited on IoT devices due to its inefficient and unscalable algorithms. IMT is a paradigm where a teacher feeds examples iteratively and intelligently based on the learner's status. In each iteration, current IMT algorithms greedily traverse the whole training set to find an example for the learner, which is computationally expensive in practice. We propose a novel teaching framework, Locality Sensitive Teaching (LST), based on locality sensitive sampling, to overcome these challenges. LST has provable near-constant time complexity, which is exponentially better than the existing baseline. With at most 425.12× speedups and 99.76% energy savings over IMT, LST is the first algorithm that enables energy and time efficient machine teaching on IoT devices. Owing to LST's substantial efficiency and scalability, it is readily applicable in real-world education scenarios.
UR - http://www.scopus.com/inward/record.url?scp=85121019420&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85121019420&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85121019420
T3 - Advances in Neural Information Processing Systems
SP - 18049
EP - 18062
BT - Advances in Neural Information Processing Systems 34 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021
A2 - Ranzato, Marc'Aurelio
A2 - Beygelzimer, Alina
A2 - Dauphin, Yann
A2 - Liang, Percy S.
A2 - Wortman Vaughan, Jenn
T2 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021
Y2 - 6 December 2021 through 14 December 2021
ER -