Locality Sensitive Teaching

Zhaozhuo Xu, Beidi Chen, Chaojian Li, Weiyang Liu, Le Song, Yingyan Lin, Anshumali Shrivastava

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

12 Scopus citations

Abstract

The emergence of the Internet-of-Things (IoT) sheds light on applying the machine teaching (MT) algorithms for online personalized education on home devices. This direction becomes more promising during the COVID-19 pandemic when in-person education becomes infeasible. However, as one of the most influential and practical MT paradigms, iterative machine teaching (IMT) is prohibited on IoT devices due to its inefficient and unscalable algorithms. IMT is a paradigm where a teacher feeds examples iteratively and intelligently based on the learner's status. In each iteration, current IMT algorithms greedily traverse the whole training set to find an example for the learner, which is computationally expensive in practice. We propose a novel teaching framework, Locality Sensitive Teaching (LST), based on locality sensitive sampling, to overcome these challenges. LST has provable near-constant time complexity, which is exponentially better than the existing baseline. With at most 425.12× speedups and 99.76% energy savings over IMT, LST is the first algorithm that enables energy and time efficient machine teaching on IoT devices. Owing to LST's substantial efficiency and scalability, it is readily applicable in real-world education scenarios.

Original languageEnglish
Title of host publicationAdvances in Neural Information Processing Systems 34 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021
EditorsMarc'Aurelio Ranzato, Alina Beygelzimer, Yann Dauphin, Percy S. Liang, Jenn Wortman Vaughan
Pages18049-18062
Number of pages14
ISBN (Electronic)9781713845393
StatePublished - 2021
Event35th Conference on Neural Information Processing Systems, NeurIPS 2021 - Virtual, Online
Duration: 6 Dec 202114 Dec 2021

Publication series

NameAdvances in Neural Information Processing Systems
Volume22
ISSN (Print)1049-5258

Conference

Conference35th Conference on Neural Information Processing Systems, NeurIPS 2021
CityVirtual, Online
Period6/12/2114/12/21

Fingerprint

Dive into the research topics of 'Locality Sensitive Teaching'. Together they form a unique fingerprint.

Cite this