Location-Based Seeds Selection for Influence Blocking Maximization in Social Networks

Wenlong Zhu, Wu Yang, Shichang Xuan, Dapeng Man, Wei Wang, Xiaojiang Du, Mohsen Guizani

Research output: Contribution to journalArticlepeer-review

24 Scopus citations

Abstract

Influence blocking maximization (IBM) is a key problem for viral marketing in competitive social networks. Although the IBM problem has been extensively studied, existing works neglect the fact that the location information can play an important role in influence propagation. In this paper, we study the location-based seeds selection for IBM problem, which aims to find a positive seed set in a given query region to block the negative influence propagation in a given block region as much as possible. In order to overcome the low efficiency of the simulation-based greedy algorithm, we propose a heuristic algorithm IS-LSS and its improved version IS-LSS+, both of which are based on the maximum influence arborescence structure and Quadtree index, while IS-LSS+ further improves the efficiency of IS-LSS by using an upper bound method and Quadtree cell lists. The experimental results on real-world datasets demonstrate that our proposed algorithms are able to achieve matching blocking effect to the greedy algorithm as the increase in the number of positive seeds and often better than other heuristic algorithms, whereas they are four orders of magnitude faster than the greedy algorithm.

Original languageEnglish
Article number8648357
Pages (from-to)27272-27287
Number of pages16
JournalIEEE Access
Volume7
DOIs
StatePublished - 2019

Keywords

  • Influence blocking maximization
  • competitive social networks
  • location-based

Fingerprint

Dive into the research topics of 'Location-Based Seeds Selection for Influence Blocking Maximization in Social Networks'. Together they form a unique fingerprint.

Cite this