TY - JOUR
T1 - Mössbauer quadrupole splittings and electronic structure in heme proteins and model systems
T2 - A density functional theory investigation
AU - Zhang, Yong
AU - Mao, Junhong
AU - Godbout, Nathalie
AU - Oldfield, Eric
PY - 2002/11/20
Y1 - 2002/11/20
N2 - We report the results of a series of density functional theory (DFT) calculations aimed at predicting the 57Fe Mössbauer electric field gradient (EFG) tensors (quadrupole splittings and asymmetry parameters) and their orientations in S= 0, 1/2, 1,3/2, 2, and 5/2 metalloproteins and/or model systems. Excellent results were found by using a Wachter's all electron basis set for iron, 6-311G* for other heavy atoms, and 6-31G* for hydrogen atoms, BPW91 and B3LYP exchange-correlation functionals, and spin-unrestricted methods for the paramagnetic systems. For the theory versus experiment correlation, we found R2 = 0.975, slope = 0.99, intercept = -0.08 mm sec-1, rmsd = 0.30 mm sec-1 (N= 23 points) covering a ΔEQ range of 5.63 mm s-1 when using the BPW91 functional and R2 = 0.978, slope = 1.12, intercept = -0.26 mm sec-1 rmsd = 0.31 mm sec-1 when using the B3LYP functional. ΔEQ values in the following systems were successfully predicted: (1) ferric low-spin (S = 1/2) systems, including one iron porphyrin with the usual (dxy)2(dxzdyz)3 electronic configuration and two iron porphyrins with the more unusual (dxzdyz)4(dxy)1 electronic configuration; (2) ferrous NO-heme model compounds (S = 1/2); (3) ferrous intermediate spin (S = 1) tetraphenylporphinato iron(II); (4) a ferric intermediate spin (S = 3/2) iron porphyrin; (5) ferrous high-spin (S = 2) deoxymyoglobin and deoxyhemoglobin; and (6) ferric high spin (S = 5/2) metmyoglobin plus two five-coordinate and one six-coordinate iron porphyrins. In addition, seven diamagnetic (S = 0, d6 and d8) systems studied previously were reinvestigated using the same functionals and basis set scheme as used for the paramagnetic systems. All computed asymmetry parameters were found to be in good agreement with the available experimental data as were the electric field gradient tensor orientations. In addition, we investigated the electronic structures of several systems, including the (dxy)2(dxzdyz)3 and (dxz,dyz)4(dxy)1 [Fe(III)/porphyrinate]+ cations as well as the NO adduct of Fe(II)(octaethylporphinate), where interesting information on the spin density distributions can be readily obtained from the computed wave functions.
AB - We report the results of a series of density functional theory (DFT) calculations aimed at predicting the 57Fe Mössbauer electric field gradient (EFG) tensors (quadrupole splittings and asymmetry parameters) and their orientations in S= 0, 1/2, 1,3/2, 2, and 5/2 metalloproteins and/or model systems. Excellent results were found by using a Wachter's all electron basis set for iron, 6-311G* for other heavy atoms, and 6-31G* for hydrogen atoms, BPW91 and B3LYP exchange-correlation functionals, and spin-unrestricted methods for the paramagnetic systems. For the theory versus experiment correlation, we found R2 = 0.975, slope = 0.99, intercept = -0.08 mm sec-1, rmsd = 0.30 mm sec-1 (N= 23 points) covering a ΔEQ range of 5.63 mm s-1 when using the BPW91 functional and R2 = 0.978, slope = 1.12, intercept = -0.26 mm sec-1 rmsd = 0.31 mm sec-1 when using the B3LYP functional. ΔEQ values in the following systems were successfully predicted: (1) ferric low-spin (S = 1/2) systems, including one iron porphyrin with the usual (dxy)2(dxzdyz)3 electronic configuration and two iron porphyrins with the more unusual (dxzdyz)4(dxy)1 electronic configuration; (2) ferrous NO-heme model compounds (S = 1/2); (3) ferrous intermediate spin (S = 1) tetraphenylporphinato iron(II); (4) a ferric intermediate spin (S = 3/2) iron porphyrin; (5) ferrous high-spin (S = 2) deoxymyoglobin and deoxyhemoglobin; and (6) ferric high spin (S = 5/2) metmyoglobin plus two five-coordinate and one six-coordinate iron porphyrins. In addition, seven diamagnetic (S = 0, d6 and d8) systems studied previously were reinvestigated using the same functionals and basis set scheme as used for the paramagnetic systems. All computed asymmetry parameters were found to be in good agreement with the available experimental data as were the electric field gradient tensor orientations. In addition, we investigated the electronic structures of several systems, including the (dxy)2(dxzdyz)3 and (dxz,dyz)4(dxy)1 [Fe(III)/porphyrinate]+ cations as well as the NO adduct of Fe(II)(octaethylporphinate), where interesting information on the spin density distributions can be readily obtained from the computed wave functions.
UR - http://www.scopus.com/inward/record.url?scp=0037146085&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0037146085&partnerID=8YFLogxK
U2 - 10.1021/ja020298o
DO - 10.1021/ja020298o
M3 - Article
C2 - 12431124
AN - SCOPUS:0037146085
SN - 0002-7863
VL - 124
SP - 13921
EP - 13930
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 46
ER -