Mechanical damage propagation in polymer electrolyte membrane fuel cells

Roshanak Banan, Jean W. Zu, Aimy Bazylak

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

While significant advances in polymer electrolyte membrane fuel cell (PEMFC) technology have taken place in the past decade, challenges still remain in the area of mechanical degradations [1]. Mechanical degradations and damage in PEMFCs including cracks and failure in the membrane electrode assembly (MEA) [2-5] can lead directly to fuel crossover, performance degradation, and reduced durability. It is therefore critical to identify and control the mechanisms that can contribute to damage initiation and propagation in the PEMFC. In this work, we investigate the damage propagation in the MEA, with a special focus on the gas diffusion layer (GDL)/catalyst layer (CL) and the membrane/CL interfaces. A numerical cohesive constitutive model is developed to explore the effect of geometry, the material properties of each component, and the location of the delamination on the propagation behaviour of through-plane delaminations.

Original languageEnglish
Title of host publicationASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology Collocated with the ASME 2012 6th International Conference on Energy Sustainability, FUELCELL 2012
Pages229-233
Number of pages5
DOIs
StatePublished - 2012
EventASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology, FUELCELL 2012 Collocated with the ASME 2012 6th International Conference on Energy Sustainability - San Diego, CA, United States
Duration: 23 Jul 201226 Jul 2012

Publication series

NameASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology Collocated with the ASME 2012 6th International Conference on Energy Sustainability, FUELCELL 2012

Conference

ConferenceASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology, FUELCELL 2012 Collocated with the ASME 2012 6th International Conference on Energy Sustainability
Country/TerritoryUnited States
CitySan Diego, CA
Period23/07/1226/07/12

Fingerprint

Dive into the research topics of 'Mechanical damage propagation in polymer electrolyte membrane fuel cells'. Together they form a unique fingerprint.

Cite this