TY - JOUR
T1 - Model calibration and automated trading agent for Euro futures
AU - Creamer, Germán
PY - 2012/4
Y1 - 2012/4
N2 - We explored the application of a machine learning method, Logitboost, to automatically calibrate a trading model using different versions of the same technical analysis indicators. This approach takes advantage of boosting's feature selection capability to select an optimal combination of technical indicators and design a new set of trading rules. We tested this approach with high-frequency data of the Dow Jones EURO STOXX 50 Index Futures (FESX) and the DAX Futures (FDAX) for March 2009. Our method was implemented with different learning algorithms and outperformed a combination of the same group of technical analysis indicators using the parameters typically recommended by practitioners. We incorporated this method of model calibration in a trading agent that relies on a layered structure consisting of the machine learning algorithm described above, an online learning utility, a trading strategy, and a risk management overlay. The online learning layer combines the output of several experts and suggests a short or long position. If the expected position is positive (negative), the trading agent sends a buy (sell) limit order at prices slightly lower (higher) than the bid price at the top of the buy (sell) order book less (plus) transaction costs. If the order is not 100% filled within a fixed period (i.e. 1 minute) of being issued, the existent limit orders are cancelled, and limit orders are reissued according to the new experts' forecast. As part of its risk management capability, the trading agent eliminates any weak trading signal. The trading agent algorithm generated positive returns for the two major European index futures (FESX and FDAX) and outperformed a buy-and-hold strategy.
AB - We explored the application of a machine learning method, Logitboost, to automatically calibrate a trading model using different versions of the same technical analysis indicators. This approach takes advantage of boosting's feature selection capability to select an optimal combination of technical indicators and design a new set of trading rules. We tested this approach with high-frequency data of the Dow Jones EURO STOXX 50 Index Futures (FESX) and the DAX Futures (FDAX) for March 2009. Our method was implemented with different learning algorithms and outperformed a combination of the same group of technical analysis indicators using the parameters typically recommended by practitioners. We incorporated this method of model calibration in a trading agent that relies on a layered structure consisting of the machine learning algorithm described above, an online learning utility, a trading strategy, and a risk management overlay. The online learning layer combines the output of several experts and suggests a short or long position. If the expected position is positive (negative), the trading agent sends a buy (sell) limit order at prices slightly lower (higher) than the bid price at the top of the buy (sell) order book less (plus) transaction costs. If the order is not 100% filled within a fixed period (i.e. 1 minute) of being issued, the existent limit orders are cancelled, and limit orders are reissued according to the new experts' forecast. As part of its risk management capability, the trading agent eliminates any weak trading signal. The trading agent algorithm generated positive returns for the two major European index futures (FESX and FDAX) and outperformed a buy-and-hold strategy.
KW - Agent based economics
KW - Algorithmic trading
KW - Automated trading
KW - Boosting
KW - Machine learning
KW - Trading agents
UR - http://www.scopus.com/inward/record.url?scp=84859626085&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84859626085&partnerID=8YFLogxK
U2 - 10.1080/14697688.2012.664921
DO - 10.1080/14697688.2012.664921
M3 - Article
AN - SCOPUS:84859626085
SN - 1469-7688
VL - 12
SP - 531
EP - 545
JO - Quantitative Finance
JF - Quantitative Finance
IS - 4
ER -