Modelling and numerical analysis for high frequency characteristics of laminated galfenol based on eddy-current

Yimin Tan, Zuguang Zhang, Jean Zu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Galfenol, a novel magnetostrictive and ferromagnetic material, has been employed in various applications because of the material's outstanding mechanical properties. For high frequency applications, the energy loss of eddy-current is a critical criterion because this loss not only reduces the power efficiency for Galfenol material, but also rapidly generates large amounts of heat that can destabilize the system. While laminating ferromagnetic material has been proved to be an effective way that minimises eddy-current, the objective of this research is to investigate the laminated Galfenol material's plausibility in high frequency applications. For the prescribed geometry, an accurate model for the generated eddy-current is derived based on the Maxwell equations. Combining a built magnetic coupled dynamic model, the relationship between the strain response and the applied magnetic field is derived under high frequency conditions. The simulative results of the laminated Galfenol rods are compared to those rods without laminations. The comparison shows that the laminated Galfenol rod exhibits a milder hysteresis than the non-laminated Galfenol rod. Furthermore, the laminated Galfenol rod is able to maintain a high strain output with a broader frequency range compared to the non-laminated Galfenol rod. This work proves that laminating Galfenol rods are capable of restricting the generation of eddy-current and improving high frequency characteristics significantly.

Original languageEnglish
Title of host publicationDynamics, Vibration, and Control
ISBN (Electronic)9780791846476
DOIs
StatePublished - 2014
EventASME 2014 International Mechanical Engineering Congress and Exposition, IMECE 2014 - Montreal, Canada
Duration: 14 Nov 201420 Nov 2014

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
Volume4A

Conference

ConferenceASME 2014 International Mechanical Engineering Congress and Exposition, IMECE 2014
Country/TerritoryCanada
CityMontreal
Period14/11/1420/11/14

Fingerprint

Dive into the research topics of 'Modelling and numerical analysis for high frequency characteristics of laminated galfenol based on eddy-current'. Together they form a unique fingerprint.

Cite this