MONGOOSE: A LEARNABLE LSH FRAMEWORK FOR EFFICIENT NEURAL NETWORK TRAINING

Beidi Chen, Zichang Liu, Binghui Peng, Zhaozhuo Xu, Jonathan Lingjie Li, Tri Dao, Zhao Song, Anshumali Shrivastava, Christopher Ré

Research output: Contribution to conferencePaperpeer-review

23 Scopus citations

Abstract

Recent advances by practitioners in the deep learning community have breathed new life into Locality Sensitive Hashing (LSH), using it to reduce memory and time bottlenecks in neural network (NN) training. However, while LSH has sublinear guarantees for approximate near-neighbor search in theory, it is known to have inefficient query time in practice due to its use of random hash functions. Moreover, when model parameters are changing, LSH suffers from update overhead. This work is motivated by an observation that model parameters evolve slowly, such that the changes do not always require an LSH update to maintain performance. This phenomenon points to the potential for a reduction in update time and allows for a modified learnable version of data-dependent LSH to improve query time at a low cost. We use the above insights to build MONGOOSE, an end-to-end LSH framework for efficient NN training. In particular, MONGOOSE is equipped with a scheduling algorithm to adaptively perform LSH updates with provable guarantees and learnable hash functions to improve query efficiency. Empirically, we validate MONGOOSE on large-scale deep learning models for recommendation systems and language modeling. We find that it achieves up to 8% better accuracy compared to previous LSH approaches, with 6.5× speed-up and 6× reduction in memory usage.

Original languageEnglish
StatePublished - 2021
Event9th International Conference on Learning Representations, ICLR 2021 - Virtual, Online
Duration: 3 May 20217 May 2021

Conference

Conference9th International Conference on Learning Representations, ICLR 2021
CityVirtual, Online
Period3/05/217/05/21

Fingerprint

Dive into the research topics of 'MONGOOSE: A LEARNABLE LSH FRAMEWORK FOR EFFICIENT NEURAL NETWORK TRAINING'. Together they form a unique fingerprint.

Cite this