TY - CONF
T1 - MONGOOSE
T2 - 9th International Conference on Learning Representations, ICLR 2021
AU - Chen, Beidi
AU - Liu, Zichang
AU - Peng, Binghui
AU - Xu, Zhaozhuo
AU - Li, Jonathan Lingjie
AU - Dao, Tri
AU - Song, Zhao
AU - Shrivastava, Anshumali
AU - Ré, Christopher
N1 - Publisher Copyright:
© 2021 ICLR 2021 - 9th International Conference on Learning Representations. All rights reserved.
PY - 2021
Y1 - 2021
N2 - Recent advances by practitioners in the deep learning community have breathed new life into Locality Sensitive Hashing (LSH), using it to reduce memory and time bottlenecks in neural network (NN) training. However, while LSH has sublinear guarantees for approximate near-neighbor search in theory, it is known to have inefficient query time in practice due to its use of random hash functions. Moreover, when model parameters are changing, LSH suffers from update overhead. This work is motivated by an observation that model parameters evolve slowly, such that the changes do not always require an LSH update to maintain performance. This phenomenon points to the potential for a reduction in update time and allows for a modified learnable version of data-dependent LSH to improve query time at a low cost. We use the above insights to build MONGOOSE, an end-to-end LSH framework for efficient NN training. In particular, MONGOOSE is equipped with a scheduling algorithm to adaptively perform LSH updates with provable guarantees and learnable hash functions to improve query efficiency. Empirically, we validate MONGOOSE on large-scale deep learning models for recommendation systems and language modeling. We find that it achieves up to 8% better accuracy compared to previous LSH approaches, with 6.5× speed-up and 6× reduction in memory usage.
AB - Recent advances by practitioners in the deep learning community have breathed new life into Locality Sensitive Hashing (LSH), using it to reduce memory and time bottlenecks in neural network (NN) training. However, while LSH has sublinear guarantees for approximate near-neighbor search in theory, it is known to have inefficient query time in practice due to its use of random hash functions. Moreover, when model parameters are changing, LSH suffers from update overhead. This work is motivated by an observation that model parameters evolve slowly, such that the changes do not always require an LSH update to maintain performance. This phenomenon points to the potential for a reduction in update time and allows for a modified learnable version of data-dependent LSH to improve query time at a low cost. We use the above insights to build MONGOOSE, an end-to-end LSH framework for efficient NN training. In particular, MONGOOSE is equipped with a scheduling algorithm to adaptively perform LSH updates with provable guarantees and learnable hash functions to improve query efficiency. Empirically, we validate MONGOOSE on large-scale deep learning models for recommendation systems and language modeling. We find that it achieves up to 8% better accuracy compared to previous LSH approaches, with 6.5× speed-up and 6× reduction in memory usage.
UR - http://www.scopus.com/inward/record.url?scp=85108172280&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85108172280&partnerID=8YFLogxK
M3 - Paper
AN - SCOPUS:85108172280
Y2 - 3 May 2021 through 7 May 2021
ER -