TY - JOUR
T1 - Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform
AU - Cui, Xu
AU - Lee, Gwan Hyoung
AU - Kim, Young Duck
AU - Arefe, Ghidewon
AU - Huang, Pinshane Y.
AU - Lee, Chul Ho
AU - Chenet, Daniel A.
AU - Zhang, Xian
AU - Wang, Lei
AU - Ye, Fan
AU - Pizzocchero, Filippo
AU - Jessen, Bjarke S.
AU - Watanabe, Kenji
AU - Taniguchi, Takashi
AU - Muller, David A.
AU - Low, Tony
AU - Kim, Philip
AU - Hone, James
N1 - Publisher Copyright:
© 2015 Macmillan Publishers Limited.
PY - 2015/6/6
Y1 - 2015/6/6
N2 - Atomically thin two-dimensional semiconductors such as MoS 2 hold great promise for electrical, optical and mechanical devices and display novel physical phenomena. However, the electron mobility of mono-and few-layer MoS 2 has so far been substantially below theoretically predicted limits, which has hampered efforts to observe its intrinsic quantum transport behaviours. Potential sources of disorder and scattering include defects such as sulphur vacancies in the MoS2 itself as well as extrinsic sources such as charged impurities and remote optical phonons from oxide dielectrics. To reduce extrinsic scattering, we have developed here a van der Waals heterostructure device platform where MoS 2 layers are fully encapsulated within hexagonal boron nitride and electrically contacted in a multi-terminal geometry using gate-tunable graphene electrodes. Magneto-transport measurements show dramatic improvements in performance, including a record-high Hall mobility reaching 34,000cm 2 V -1 s -1 for six-layer MoS2 at low temperature, confirming that low-temperature performance in previous studies was limited by extrinsic interfacial impurities rather than bulk defects in the MoS2. We also observed Shubnikov-de Haas oscillations in high-mobility monolayer and few-layer MoS2. Modelling of potential scattering sources and quantum lifetime analysis indicate that a combination of short-range and long-range interfacial scattering limits the low-temperature mobility of MoS 2.
AB - Atomically thin two-dimensional semiconductors such as MoS 2 hold great promise for electrical, optical and mechanical devices and display novel physical phenomena. However, the electron mobility of mono-and few-layer MoS 2 has so far been substantially below theoretically predicted limits, which has hampered efforts to observe its intrinsic quantum transport behaviours. Potential sources of disorder and scattering include defects such as sulphur vacancies in the MoS2 itself as well as extrinsic sources such as charged impurities and remote optical phonons from oxide dielectrics. To reduce extrinsic scattering, we have developed here a van der Waals heterostructure device platform where MoS 2 layers are fully encapsulated within hexagonal boron nitride and electrically contacted in a multi-terminal geometry using gate-tunable graphene electrodes. Magneto-transport measurements show dramatic improvements in performance, including a record-high Hall mobility reaching 34,000cm 2 V -1 s -1 for six-layer MoS2 at low temperature, confirming that low-temperature performance in previous studies was limited by extrinsic interfacial impurities rather than bulk defects in the MoS2. We also observed Shubnikov-de Haas oscillations in high-mobility monolayer and few-layer MoS2. Modelling of potential scattering sources and quantum lifetime analysis indicate that a combination of short-range and long-range interfacial scattering limits the low-temperature mobility of MoS 2.
UR - http://www.scopus.com/inward/record.url?scp=84930476811&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84930476811&partnerID=8YFLogxK
U2 - 10.1038/nnano.2015.70
DO - 10.1038/nnano.2015.70
M3 - Article
AN - SCOPUS:84930476811
SN - 1748-3387
VL - 10
SP - 534
EP - 540
JO - Nature Nanotechnology
JF - Nature Nanotechnology
IS - 6
ER -