Multifunctional energy harvesting locally resonant metastructures

Christopher Sugino, Vinciane Guillot, Alper Erturk

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Scopus citations

Abstract

Vibration-based energy harvesting is a growing field for generating low-power electricity to use in wireless electronic devices, such as the sensor networks used in structural health monitoring applications. Locally resonant metastructures, which are structures that comprise locally resonant metamaterial components, enable bandgap formation at wavelengths much longer than the lattice size, for critical applications such as lowfrequency vibration attenuation in flexible structures. This work aims to bridge the domains of energy harvesting and locally resonant metamaterials to form multifunctional structures that exhibit both low-power electricity generation and vibration attenuation capabilities. A fully coupled electromechanical modeling framework is developed for two characteristic systems and their modal analysis is presented. Simulations are performed to explore the vibration and electrical power frequency response maps for varying electrical load resistance, and optimal loading conditions are presented. Case studies are presented to understand the interaction of bandgap formation and energy harvesting capabilities of this new class of multifunctional energyharvesting locally resonant metastructures. It is shown that useful energy can be harvested from the locally resonant metastructure without significantly diminishing their dramatic vibration attenuation in the locally resonant bandgap. Thus, by integrating energy harvesters into a locally resonant metastructure, there is new potential for multifunctional self-powering or self-sensing locally resonant metastructures.

Original languageEnglish
Title of host publicationDevelopment and Characterization of Multifunctional Materials; Mechanics and Behavior of Active Materials; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies
ISBN (Electronic)9780791858257
DOIs
StatePublished - 2017
EventASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2017 - Snowbird, United States
Duration: 18 Sep 201720 Sep 2017

Publication series

NameASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2017
Volume1

Conference

ConferenceASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2017
Country/TerritoryUnited States
CitySnowbird
Period18/09/1720/09/17

Fingerprint

Dive into the research topics of 'Multifunctional energy harvesting locally resonant metastructures'. Together they form a unique fingerprint.

Cite this