Mutual localization: Two camera relative 6-DOF pose estimation from reciprocal fiducial observation

Vikas Dhiman, Julian Ryde, Jason J. Corso

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

14 Scopus citations

Abstract

Concurrently estimating the 6-DOF pose of multiple cameras or robots - cooperative localization - is a core problem in contemporary robotics. Current works focus on a set of mutually observable world landmarks and often require inbuilt egomotion estimates; situations in which both assumptions are violated often arise, for example, robots with erroneous low quality odometry and IMU exploring an unknown environment. In contrast to these existing works in cooperative localization, we propose a cooperative localization method, which we call mutual localization, that uses reciprocal observations of camera-fiducials to obviate the need for egomotion estimates and mutually observable world landmarks. We formulate and solve an algebraic formulation for the pose of the two camera mutual localization setup under these assumptions. Our experiments demonstrate the capabilities of our proposal egomotion-free cooperative localization method: for example, the method achieves 2cm range and 0.7 degree accuracy at 2m sensing for 6-DOF pose. To demonstrate the applicability of the proposed work, we deploy our method on Turtlebots and we compare our results with ARToolKit [1] and Bundler [2], over which our method achieves a tenfold improvement in translation estimation accuracy.

Original languageEnglish
Title of host publicationIROS 2013
Subtitle of host publicationNew Horizon, Conference Digest - 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems
Pages1347-1354
Number of pages8
DOIs
StatePublished - 2013
Event2013 26th IEEE/RSJ International Conference on Intelligent Robots and Systems: New Horizon, IROS 2013 - Tokyo, Japan
Duration: 3 Nov 20138 Nov 2013

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2013 26th IEEE/RSJ International Conference on Intelligent Robots and Systems: New Horizon, IROS 2013
Country/TerritoryJapan
CityTokyo
Period3/11/138/11/13

Fingerprint

Dive into the research topics of 'Mutual localization: Two camera relative 6-DOF pose estimation from reciprocal fiducial observation'. Together they form a unique fingerprint.

Cite this