TY - JOUR
T1 - Nanoscale composition of biphasic polymer nanocolloids in aqueous suspension
AU - Kim, Ginam
AU - Sousa, Alioscka
AU - Meyers, Deborah
AU - Libera, Matthew
PY - 2008/10
Y1 - 2008/10
N2 - The molecular distribution in nanocolloids of poly(dimethyl siloxane) (PDMS) and an organic copolymer (methyl acrylate co-methyl methacrylate co-vinyl acetate) preserved in a frozen aqueous solution was investigated using cryovalence electron energy-loss spectroscopy (EELS) coupled with a scanning transmission electron microscope. Low energy-loss spectra depend upon valence electron structure, and we show that they are substantially different for the PDMS, the copolymer, and the vitrified water studied here. Combining a high efficiency detection system and the use of high-signal low-loss spectra in EELS, we achieved a spatial resolution of 8 nm without serious beam-induced specimen damage in this radiation-sensitive soft-materials system. To obtain quantitative phase maps of silicone and copolymer composition within individual nanoparticles, spectrum datasets were processed via multiple least squares fitting. Quantitative line profiles from the resulting compositional maps indicate that the PDMS lobe of biphasic nanoparticles contained a significant amount of the copolymer and a diffuse interface was formed. Since the nanoparticle synthesis involves polymerization of acrylate monomer dissolved in PDMS nanoparticle precursors, these results suggest that the evolution of the nanocolloid morphology during synthesis is kinetically frozen as the acrylate copolymer achieves some critical molecular weight.
AB - The molecular distribution in nanocolloids of poly(dimethyl siloxane) (PDMS) and an organic copolymer (methyl acrylate co-methyl methacrylate co-vinyl acetate) preserved in a frozen aqueous solution was investigated using cryovalence electron energy-loss spectroscopy (EELS) coupled with a scanning transmission electron microscope. Low energy-loss spectra depend upon valence electron structure, and we show that they are substantially different for the PDMS, the copolymer, and the vitrified water studied here. Combining a high efficiency detection system and the use of high-signal low-loss spectra in EELS, we achieved a spatial resolution of 8 nm without serious beam-induced specimen damage in this radiation-sensitive soft-materials system. To obtain quantitative phase maps of silicone and copolymer composition within individual nanoparticles, spectrum datasets were processed via multiple least squares fitting. Quantitative line profiles from the resulting compositional maps indicate that the PDMS lobe of biphasic nanoparticles contained a significant amount of the copolymer and a diffuse interface was formed. Since the nanoparticle synthesis involves polymerization of acrylate monomer dissolved in PDMS nanoparticle precursors, these results suggest that the evolution of the nanocolloid morphology during synthesis is kinetically frozen as the acrylate copolymer achieves some critical molecular weight.
KW - Biphasic nanocolloid
KW - Cryo-STEM
KW - EELS
KW - Multiple least square fitting
KW - Polymer
UR - http://www.scopus.com/inward/record.url?scp=52149107765&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=52149107765&partnerID=8YFLogxK
U2 - 10.1017/S1431927608080677
DO - 10.1017/S1431927608080677
M3 - Article
AN - SCOPUS:52149107765
SN - 1431-9276
VL - 14
SP - 459
EP - 468
JO - Microscopy and Microanalysis
JF - Microscopy and Microanalysis
IS - 5
ER -