Nonlinear free vibration of a rotor shaft system with viscoelastically supported bearings

N. Shabaneh, J. W. Zu

Research output: Contribution to conferencePaperpeer-review

Abstract

This paper investigates the dynamic analysis of a single-rotor shaft system with nonlinear elastic bearings at the ends mounted on viscoelastic suspension. A Timoshenko shaft model is utilized to incorporate the flexibility of the shaft; the rotor is considered to be rigid and located at the mid-span of the shaft. A nonlinear bearing pedestal model is assumed which has a cubic nonlinear spring and linear damping characteristics. The viscoelastic supports are modeled using the Kelvin-Voigt model. Free vibration is investigated based on the direct multiple scales method of one-to-one frequency-to-amplitude relationship using third order perturbation expansion. The results of the nonlinear analysis show that a limiting value of the internal damping coefficient of the shaft exists where the trend of the frequency-response curve switches.

Original languageEnglish
Pages961-967
Number of pages7
DOIs
StatePublished - 2003
Event2003 ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference - Chicago, IL, United States
Duration: 2 Sep 20036 Sep 2003

Conference

Conference2003 ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference
Country/TerritoryUnited States
CityChicago, IL
Period2/09/036/09/03

Fingerprint

Dive into the research topics of 'Nonlinear free vibration of a rotor shaft system with viscoelastically supported bearings'. Together they form a unique fingerprint.

Cite this