TY - JOUR
T1 - Novel transcriptome profiling analyses demonstrate that selective peroxisome proliferator-activated receptor γ (PPARγ) modulators display attenuated and selective gene regulatory activity in comparison with PPARγ full agonists
AU - Tan, Yejun
AU - Muise, Eric S.
AU - Dai, Hongyue
AU - Raubertas, Richard
AU - Wong, Kenny K.
AU - Thompson, G. Marie
AU - Wood, Harold B.
AU - Meinke, Peter T.
AU - Lum, Pek Yee
AU - Thompson, John R.
AU - Berger, Joel P.
PY - 2012/7
Y1 - 2012/7
N2 - Selective peroxisome proliferator-activated receptor γ (PPARγ) modulators (SPPARγMs) have been actively pursued as the next generation of insulin-sensitizing antidiabetic drugs, because the currently marketed PPARγ full agonists, pioglitazone and rosiglitazone, have been reported to produce serious adverse effects among patients with type 2 diabetes mellitus. We conducted extensive transcriptome profiling studies to characterize and to contrast the activities of 70 SPPARγMs and seven PPARγ full agonists. In both 3T3-L1 adipocytes and adipose tissue from db/db mice, the SPPARγMs generated attenuated and selective gene-regulatory responses, in comparison with full agonists. More importantly, SPPARγMs regulated the expression of antidiabetic efficacy-associated genes to a greater extent than that of adverse effect-associated genes, whereas PPARγ full agonists regulated both gene sets proportionally. Such SPPARγM selectivity demonstrates that PPARγ ligand regulation of gene expression can be fine-tuned, and not just turned on and off, to achieve precise control of complex cellular and physiological functions. It also provides a potential molecular basis for the superior therapeutic window previously observed with SPPARγMs versus full agonists. On the basis of our profiling results, we introduce two novel, gene expressionbased scores, the γ activation index and the selectivity index, to aid in the detection and characterization of novel SPPARγMs. These studies provide new insights into the gene-regulatory activity of SPPARγMs as well as novel quantitative indices to facilitate the identification of PPARγ ligands with robust insulin-sensitizing activity and improved tolerance among patients with type 2 diabetes, compared with presently available PPARγ agonist drugs.
AB - Selective peroxisome proliferator-activated receptor γ (PPARγ) modulators (SPPARγMs) have been actively pursued as the next generation of insulin-sensitizing antidiabetic drugs, because the currently marketed PPARγ full agonists, pioglitazone and rosiglitazone, have been reported to produce serious adverse effects among patients with type 2 diabetes mellitus. We conducted extensive transcriptome profiling studies to characterize and to contrast the activities of 70 SPPARγMs and seven PPARγ full agonists. In both 3T3-L1 adipocytes and adipose tissue from db/db mice, the SPPARγMs generated attenuated and selective gene-regulatory responses, in comparison with full agonists. More importantly, SPPARγMs regulated the expression of antidiabetic efficacy-associated genes to a greater extent than that of adverse effect-associated genes, whereas PPARγ full agonists regulated both gene sets proportionally. Such SPPARγM selectivity demonstrates that PPARγ ligand regulation of gene expression can be fine-tuned, and not just turned on and off, to achieve precise control of complex cellular and physiological functions. It also provides a potential molecular basis for the superior therapeutic window previously observed with SPPARγMs versus full agonists. On the basis of our profiling results, we introduce two novel, gene expressionbased scores, the γ activation index and the selectivity index, to aid in the detection and characterization of novel SPPARγMs. These studies provide new insights into the gene-regulatory activity of SPPARγMs as well as novel quantitative indices to facilitate the identification of PPARγ ligands with robust insulin-sensitizing activity and improved tolerance among patients with type 2 diabetes, compared with presently available PPARγ agonist drugs.
UR - http://www.scopus.com/inward/record.url?scp=84862562322&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84862562322&partnerID=8YFLogxK
U2 - 10.1124/mol.111.076679
DO - 10.1124/mol.111.076679
M3 - Article
C2 - 22496518
AN - SCOPUS:84862562322
SN - 0026-895X
VL - 82
SP - 68
EP - 79
JO - Molecular Pharmacology
JF - Molecular Pharmacology
IS - 1
ER -