TY - GEN
T1 - Numerical analysis and parameter optimization of a portable two-body attenuator wave energy converter
AU - Capper, Joseph
AU - Mi, Jia
AU - Li, Qiaofeng
AU - Zuo, Lei
N1 - Publisher Copyright:
Copyright © 2021 by ASME
PY - 2021
Y1 - 2021
N2 - Easily portable, small-sized ocean wave energy converters (WECs) may be used in many situations where large-sized WEC devices are not necessary or practical. Power maximization for small-sized WECs amplifies challenges that are not as difficult with large-sized devices, especially tuning the device's natural frequency to match the wave frequency and achieve resonance. In this study, power maximization is performed for a small-sized, two-body attenuator WEC with a footprint constraint of about 1m. A thin, submerged tuning plate is added to each body to increase added mass without significantly increasing hydrostatic stiffness in order to reach resonance. Three different body cross-section geometries are analyzed. Device power absorption is determined through time domain simulations using WEC-Sim with a simplified two-degree-of-freedom (2DOF) model and a more realistic three-degree-of-freedom (3DOF) model. Different drag coefficients are used for each geometry to explore the effect of drag. A mooring stiffness study is performed with the 3DOF model to investigate the mooring impact. Based on the 2DOF and 3DOF power results, there is not a significant difference in power between the shapes if the same drag coefficient is used, but the elliptical shape has the highest power after assigning a different approximate drag coefficient to each shape. The mooring stiffness study shows that mooring stiffness can be increased in order to increase relative motion between the two bodies and consequently increase the power.
AB - Easily portable, small-sized ocean wave energy converters (WECs) may be used in many situations where large-sized WEC devices are not necessary or practical. Power maximization for small-sized WECs amplifies challenges that are not as difficult with large-sized devices, especially tuning the device's natural frequency to match the wave frequency and achieve resonance. In this study, power maximization is performed for a small-sized, two-body attenuator WEC with a footprint constraint of about 1m. A thin, submerged tuning plate is added to each body to increase added mass without significantly increasing hydrostatic stiffness in order to reach resonance. Three different body cross-section geometries are analyzed. Device power absorption is determined through time domain simulations using WEC-Sim with a simplified two-degree-of-freedom (2DOF) model and a more realistic three-degree-of-freedom (3DOF) model. Different drag coefficients are used for each geometry to explore the effect of drag. A mooring stiffness study is performed with the 3DOF model to investigate the mooring impact. Based on the 2DOF and 3DOF power results, there is not a significant difference in power between the shapes if the same drag coefficient is used, but the elliptical shape has the highest power after assigning a different approximate drag coefficient to each shape. The mooring stiffness study shows that mooring stiffness can be increased in order to increase relative motion between the two bodies and consequently increase the power.
KW - Attenuator
KW - Geometry optimization
KW - Power maximization
KW - Resonance tuning
KW - Wave energy converter (WEC)
UR - http://www.scopus.com/inward/record.url?scp=85119990691&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85119990691&partnerID=8YFLogxK
U2 - 10.1115/DETC2021-69977
DO - 10.1115/DETC2021-69977
M3 - Conference contribution
AN - SCOPUS:85119990691
T3 - Proceedings of the ASME Design Engineering Technical Conference
BT - 33rd Conference on Mechanical Vibration and Sound (VIB)
T2 - 33rd Conference on Mechanical Vibration and Sound, VIB 2021, Held as Part of the ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC-CIE 2021
Y2 - 17 August 2021 through 19 August 2021
ER -