On Physical Layer Security in Energy-Efficient Wireless Health Monitoring Applications

Belal Essam Eldiwany, Alaa Awad Abdellatif, Amr Mohamed, Abdulla Al-Ali, Mohsen Guizani, Xiaojiang Du

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

7 Scopus citations

Abstract

In this paper, we investigate a multi-objective optimization framework for secure wireless health monitoring applications. In particular, we consider a legitimate link for the transmission of a vital EEG signal, threatened by a passive eavesdropping attack, that aims at wiretapping these measurements. We incorporate in our framework the practical secrecy metric, namely secrecy outage probability (SOP), which requires only the knowledge of side information regarding the eavesdropper (Ev), instead of completely having its instantaneous channel state information (CSI). To that end, we formulate an optimization problem in the form of maximizing the energy efficiency of the transmitter, while minimizing the distortion encountered at the signal resulting from the compression process prior to transmission, under realistic quality of service (QoS) constraints. The problem is shown to be nonconvex and NP-complete. Towards solving the problem, a branch and bound (BnB)-based algorithm is presented where a θ-suboptimal solution, from the global optimal one, is obtained. Numerical results are conducted to verify the system performance, where it is shown that our proposed approach outperforms similar systems deploying fixed compression policies (FCPs). We successfully meet QoS requirements while optimizing the system objectives, at all channel conditions, which cannot be attained by these FCP approaches. Interestingly, we also show that a target secrecy rate can be practically achieved with nonzero probability, even when the Ev has a better channel condition, on the average, than that for the legitimate receiver.

Original languageEnglish
Title of host publication2019 IEEE International Conference on Communications, ICC 2019 - Proceedings
ISBN (Electronic)9781538680889
DOIs
StatePublished - May 2019
Event2019 IEEE International Conference on Communications, ICC 2019 - Shanghai, China
Duration: 20 May 201924 May 2019

Publication series

NameIEEE International Conference on Communications
Volume2019-May
ISSN (Print)1550-3607

Conference

Conference2019 IEEE International Conference on Communications, ICC 2019
Country/TerritoryChina
CityShanghai
Period20/05/1924/05/19

Keywords

  • Physical layer security
  • branch and bound
  • secrecy outage probability
  • wireless health monitoring

Fingerprint

Dive into the research topics of 'On Physical Layer Security in Energy-Efficient Wireless Health Monitoring Applications'. Together they form a unique fingerprint.

Cite this