TY - JOUR
T1 - Optic Nerve Sheath Ultrasound Image Segmentation Based on CBC-YOLOv5s
AU - Chu, Yonghua
AU - Xu, Jinyang
AU - Wu, Chunshuang
AU - Ye, Jianping
AU - Zhang, Jucheng
AU - Shen, Lei
AU - Wang, Huaxia
AU - Yao, Yudong
N1 - Publisher Copyright:
© 2024 by the authors.
PY - 2024/9
Y1 - 2024/9
N2 - The diameter of the optic nerve sheath is an important indicator for assessing the intracranial pressure in critically ill patients. The methods for measuring the optic nerve sheath diameter are generally divided into invasive and non-invasive methods. Compared to the invasive methods, the non-invasive methods are safer and have thus gained popularity. Among the non-invasive methods, using deep learning to process the ultrasound images of the eyes of critically ill patients and promptly output the diameter of the optic nerve sheath offers significant advantages. This paper proposes a CBC-YOLOv5s optic nerve sheath ultrasound image segmentation method that integrates both local and global features. First, it introduces the CBC-Backbone feature extraction network, which consists of dual-layer C3 Swin-Transformer (C3STR) and dual-layer Bottleneck Transformer (BoT3) modules. The C3STR backbone’s multi-layer convolution and residual connections focus on the local features of the optic nerve sheath, while the Window Transformer Attention (WTA) mechanism in the C3STR module and the Multi-Head Self-Attention (MHSA) in the BoT3 module enhance the model’s understanding of the global features of the optic nerve sheath. The extracted local and global features are fully integrated in the Spatial Pyramid Pooling Fusion (SPPF) module. Additionally, the CBC-Neck feature pyramid is proposed, which includes a single-layer C3STR module and three-layer CReToNeXt (CRTN) module. During upsampling feature fusion, the C3STR module is used to enhance the local and global awareness of the fused features. During downsampling feature fusion, the CRTN module’s multi-level residual design helps the network to better capture the global features of the optic nerve sheath within the fused features. The introduction of these modules achieves the thorough integration of the local and global features, enabling the model to efficiently and accurately identify the optic nerve sheath boundaries, even when the ocular ultrasound images are blurry or the boundaries are unclear. The Z2HOSPITAL-5000 dataset collected from Zhejiang University Second Hospital was used for the experiments. Compared to the widely used YOLOv5s and U-Net algorithms, the proposed method shows improved performance on the blurry test set. Specifically, the proposed method achieves precision, recall, and Intersection over Union (IoU) values that are 4.1%, 2.1%, and 4.5% higher than those of YOLOv5s. When compared to U-Net, the precision, recall, and IoU are improved by 9.2%, 21%, and 19.7%, respectively.
AB - The diameter of the optic nerve sheath is an important indicator for assessing the intracranial pressure in critically ill patients. The methods for measuring the optic nerve sheath diameter are generally divided into invasive and non-invasive methods. Compared to the invasive methods, the non-invasive methods are safer and have thus gained popularity. Among the non-invasive methods, using deep learning to process the ultrasound images of the eyes of critically ill patients and promptly output the diameter of the optic nerve sheath offers significant advantages. This paper proposes a CBC-YOLOv5s optic nerve sheath ultrasound image segmentation method that integrates both local and global features. First, it introduces the CBC-Backbone feature extraction network, which consists of dual-layer C3 Swin-Transformer (C3STR) and dual-layer Bottleneck Transformer (BoT3) modules. The C3STR backbone’s multi-layer convolution and residual connections focus on the local features of the optic nerve sheath, while the Window Transformer Attention (WTA) mechanism in the C3STR module and the Multi-Head Self-Attention (MHSA) in the BoT3 module enhance the model’s understanding of the global features of the optic nerve sheath. The extracted local and global features are fully integrated in the Spatial Pyramid Pooling Fusion (SPPF) module. Additionally, the CBC-Neck feature pyramid is proposed, which includes a single-layer C3STR module and three-layer CReToNeXt (CRTN) module. During upsampling feature fusion, the C3STR module is used to enhance the local and global awareness of the fused features. During downsampling feature fusion, the CRTN module’s multi-level residual design helps the network to better capture the global features of the optic nerve sheath within the fused features. The introduction of these modules achieves the thorough integration of the local and global features, enabling the model to efficiently and accurately identify the optic nerve sheath boundaries, even when the ocular ultrasound images are blurry or the boundaries are unclear. The Z2HOSPITAL-5000 dataset collected from Zhejiang University Second Hospital was used for the experiments. Compared to the widely used YOLOv5s and U-Net algorithms, the proposed method shows improved performance on the blurry test set. Specifically, the proposed method achieves precision, recall, and Intersection over Union (IoU) values that are 4.1%, 2.1%, and 4.5% higher than those of YOLOv5s. When compared to U-Net, the precision, recall, and IoU are improved by 9.2%, 21%, and 19.7%, respectively.
KW - image segmentation
KW - optic nerve sheath
KW - U-Net
KW - YOLOv5s
UR - http://www.scopus.com/inward/record.url?scp=85205041905&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85205041905&partnerID=8YFLogxK
U2 - 10.3390/electronics13183595
DO - 10.3390/electronics13183595
M3 - Article
AN - SCOPUS:85205041905
VL - 13
JO - Electronics (Switzerland)
JF - Electronics (Switzerland)
IS - 18
M1 - 3595
ER -