Optimizing Federated Learning on Non-IID Data with Reinforcement Learning

Hao Wang, Zakhary Kaplan, Di Niu, Baochun Li

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

778 Scopus citations

Abstract

The widespread deployment of machine learning applications in ubiquitous environments has sparked interests in exploiting the vast amount of data stored on mobile devices. To preserve data privacy, Federated Learning has been proposed to learn a shared model by performing distributed training locally on participating devices and aggregating the local models into a global one. However, due to the limited network connectivity of mobile devices, it is not practical for federated learning to perform model updates and aggregation on all participating devices in parallel. Besides, data samples across all devices are usually not independent and identically distributed (IID), posing additional challenges to the convergence and speed of federated learning. In this paper, we propose Favor, an experience-driven control framework that intelligently chooses the client devices to participate in each round of federated learning to counterbalance the bias introduced by non-IID data and to speed up convergence. Through both empirical and mathematical analysis, we observe an implicit connection between the distribution of training data on a device and the model weights trained based on those data, which enables us to profile the data distribution on that device based on its uploaded model weights. We then propose a mechanism based on deep Q-learning that learns to select a subset of devices in each communication round to maximize a reward that encourages the increase of validation accuracy and penalizes the use of more communication rounds. With extensive experiments performed in PyTorch, we show that the number of communication rounds required in federated learning can be reduced by up to 49% on the MNIST dataset, 23% on FashionMNIST, and 42% on CIFAR-10, as compared to the Federated Averaging algorithm.

Original languageEnglish
Title of host publicationINFOCOM 2020 - IEEE Conference on Computer Communications
Pages1698-1707
Number of pages10
ISBN (Electronic)9781728164120
DOIs
StatePublished - Jul 2020
Event38th IEEE Conference on Computer Communications, INFOCOM 2020 - Toronto, Canada
Duration: 6 Jul 20209 Jul 2020

Publication series

NameProceedings - IEEE INFOCOM
Volume2020-July
ISSN (Print)0743-166X

Conference

Conference38th IEEE Conference on Computer Communications, INFOCOM 2020
Country/TerritoryCanada
CityToronto
Period6/07/209/07/20

Fingerprint

Dive into the research topics of 'Optimizing Federated Learning on Non-IID Data with Reinforcement Learning'. Together they form a unique fingerprint.

Cite this