TY - GEN
T1 - Performance evaluation of suspended energy harvesting backpack using half-wave mechanical rectification
AU - Mi, Jia
AU - Li, Qiaofeng
AU - Liu, Mingyi
AU - Li, Xiaofan
AU - Zuo, Lei
N1 - Publisher Copyright:
Copyright © 2020 ASME.
PY - 2020
Y1 - 2020
N2 - Human beings are becoming more and more dependent on electronic devices, such as smart phones, smart watches, GPS, etc. This paper presents the design, modeling and testing of a novel suspended energy harvesting backpack using half-wave mechanical rectification. The proposed half-wave rectification mechanism can convert bidirectional linear vibration into unidirectional rotation with nonlinear inertia. Compared with full-wave mechanical rectification, the proposed half-wave rectification is designed only to convert the motion in one of the vibration directions while remaining idle in the other direction. Numerical simulation shows the proposed half-wave rectification based suspended energy harvesting backpack can obtain about two times of the average output power as the previous full-wave rectification design while also maintaining larger output power in the wideband frequency range. Bench test results indicate that the proposed half-wave rectification-based energy harvesting backpack can harvest 6.7 W (peak)/2.1 W (average) under 2 Hz and 6 mm excitation with a 31.8 kg payload, which is a significant improvement compared with 1.9 W(peak)/0.9 W (average) for the counterpart of full-wave rectification system. In addition, bench test results also validate the energy harvesting in wideband frequency range. Treadmill tests demonstrate an average power range of 1.2-11.0 W under walking speeds of 3.2-6.4 km/h with a 13.6 kg payload.
AB - Human beings are becoming more and more dependent on electronic devices, such as smart phones, smart watches, GPS, etc. This paper presents the design, modeling and testing of a novel suspended energy harvesting backpack using half-wave mechanical rectification. The proposed half-wave rectification mechanism can convert bidirectional linear vibration into unidirectional rotation with nonlinear inertia. Compared with full-wave mechanical rectification, the proposed half-wave rectification is designed only to convert the motion in one of the vibration directions while remaining idle in the other direction. Numerical simulation shows the proposed half-wave rectification based suspended energy harvesting backpack can obtain about two times of the average output power as the previous full-wave rectification design while also maintaining larger output power in the wideband frequency range. Bench test results indicate that the proposed half-wave rectification-based energy harvesting backpack can harvest 6.7 W (peak)/2.1 W (average) under 2 Hz and 6 mm excitation with a 31.8 kg payload, which is a significant improvement compared with 1.9 W(peak)/0.9 W (average) for the counterpart of full-wave rectification system. In addition, bench test results also validate the energy harvesting in wideband frequency range. Treadmill tests demonstrate an average power range of 1.2-11.0 W under walking speeds of 3.2-6.4 km/h with a 13.6 kg payload.
KW - Biomechanical energy
KW - Energy harvesting
KW - Half-wave mechanical rectification
KW - Inertia nonlinearity
KW - Suspended backpack
UR - http://www.scopus.com/inward/record.url?scp=85100920955&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85100920955&partnerID=8YFLogxK
U2 - 10.1115/DSCC2020-3194
DO - 10.1115/DSCC2020-3194
M3 - Conference contribution
AN - SCOPUS:85100920955
T3 - ASME 2020 Dynamic Systems and Control Conference, DSCC 2020
BT - Intelligent Transportation/Vehicles; Manufacturing; Mechatronics; Engine/After-Treatment Systems; Soft Actuators/Manipulators; Modeling/Validation; Motion/Vibration Control Applications; Multi-Agent/Networked Systems; Path Planning/Motion Control; Renewable/Smart Energy Systems; Security/Privacy of Cyber-Physical Systems; Sensors/Actuators; Tracking Control Systems; Unmanned Ground/Aerial Vehicles; Vehicle Dynamics, Estimation, Control; Vibration/Control Systems; Vibrations
T2 - ASME 2020 Dynamic Systems and Control Conference, DSCC 2020
Y2 - 5 October 2020 through 7 October 2020
ER -