Predictive 3D Sonar Mapping of Underwater Environments via Object-specific Bayesian Inference

John McConnell, Brendan Englot

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

16 Scopus citations

Abstract

Recent work has achieved dense 3D reconstruction with wide-aperture imaging sonar using a stereo pair of orthogonally oriented sonars. This allows each sonar to observe a spatial dimension that the other is missing, without requiring any prior assumptions about scene geometry. However, this is achieved only in a small region with overlapping fields-of-view, leaving large regions of sonar image observations with an unknown elevation angle. Our work aims to achieve large-scale 3D reconstruction more efficiently using this sensor arrangement. We propose dividing the world into semantic classes to exploit the presence of repeating structures in the subsea environment. We use a Bayesian inference framework to build an understanding of each object class's geometry when 3D information is available from the orthogonal sonar fusion system, and when the elevation angle of our returns is unknown, our framework is used to infer unknown 3D structure. We quantitatively validate our method in a simulation and use data collected from a real outdoor littoral environment to demonstrate the efficacy of our framework in the field.

Original languageEnglish
Title of host publication2021 IEEE International Conference on Robotics and Automation, ICRA 2021
Pages6761-6767
Number of pages7
ISBN (Electronic)9781728190778
DOIs
StatePublished - 2021
Event2021 IEEE International Conference on Robotics and Automation, ICRA 2021 - Xi'an, China
Duration: 30 May 20215 Jun 2021

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
Volume2021-May
ISSN (Print)1050-4729

Conference

Conference2021 IEEE International Conference on Robotics and Automation, ICRA 2021
Country/TerritoryChina
CityXi'an
Period30/05/215/06/21

Fingerprint

Dive into the research topics of 'Predictive 3D Sonar Mapping of Underwater Environments via Object-specific Bayesian Inference'. Together they form a unique fingerprint.

Cite this