Abstract
Open set anomaly detection (OSAD) is a crucial task that aims to identify abnormal patterns or behaviors in data sets, especially when the anomalies observed during training do not represent all possible classes of anomalies. The recent advances in quantum computing in handling complex data structures and improving machine learning models herald a paradigm shift in anomaly detection methodologies. This study proposes a Quantum Scoring Module (Qsco), embedding quantum variational circuits into neural networks to enhance the model’s processing capabilities in handling uncertainty and unlabeled data. Extensive experiments conducted across eight real-world anomaly detection datasets demonstrate our model’s superior performance in detecting anomalies across varied settings and reveal that integrating quantum simulators does not result in prohibitive time complexities. At the same time, the experimental results under different noise models also prove that Qsco is a noise-resilient algorithm. Our study validates the feasibility of quantum-enhanced anomaly detection methods in practical applications.
Original language | English |
---|---|
Title of host publication | Special Track on AI Alignment |
Editors | Toby Walsh, Julie Shah, Zico Kolter |
Pages | 19884-19894 |
Number of pages | 11 |
Edition | 19 |
ISBN (Electronic) | 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978 |
DOIs | |
State | Published - 11 Apr 2025 |
Event | 39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025 - Philadelphia, United States Duration: 25 Feb 2025 → 4 Mar 2025 |
Publication series
Name | Proceedings of the AAAI Conference on Artificial Intelligence |
---|---|
Number | 19 |
Volume | 39 |
ISSN (Print) | 2159-5399 |
ISSN (Electronic) | 2374-3468 |
Conference
Conference | 39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025 |
---|---|
Country/Territory | United States |
City | Philadelphia |
Period | 25/02/25 → 4/03/25 |