TY - JOUR
T1 - Regulation of Osteogenic Differentiation of hBMSCs by the Overlay Angles of Bone Lamellae-like Matrices
AU - Zhang, Shuyun
AU - Qu, Dengjian
AU - Luo, Bowen
AU - Wang, Lichen
AU - Li, Hong
AU - Wang, Hongjun
N1 - Publisher Copyright:
© 2024 American Chemical Society.
PY - 2024/10/23
Y1 - 2024/10/23
N2 - Oriented fibers in bone lamellae are recognized for their contribution to the anisotropic mechanical performance of the cortical bone. While increasing evidence highlights that such oriented fibers also exhibit osteogenic induction to preosteoblasts, little is known about the effect of the overlay angle between lamellae on the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). In this study, bone lamellae-like fibrous matrices composed of aligned core-shell [core: polycaprolactone (PCL)/type I collagen (Col I) + shell: Col I] nanofibers were seeded with human BMSCs (hBMSCs) and then laid over on each other layer-by-layer (L-b-L) at selected angles (0 or 45°) to form three-dimensional (3D) constructs. Upon culture for 7 and 14 days, osteogenic differentiation of hBMSCs and mineralization within the lamellae assembly (LA) were characterized by real-time PCR, Western blot, immunofluorescent staining for osteogenic markers, and alizarin red staining for calcium deposition. Compared to those of random nanofibers (LA-RF) or aligned fibers with the overlay angle of 45° (LA-AF-45), the LA of aligned fibers at a 0° overlay angle (LA-AF-0) exhibited a noticeably higher osteogenic differentiation of hBMSCs, i.e., elevated gene expression of OPN, OCN, and RUNX2 and protein levels of ALP and RUNX2, while promoting mineral deposition as indicated by alizarin red staining and mechanical testing. Further analyses of hBMSCs within LA-AF-0 revealed an increase in both total and phosphorylated integrin β1, which subsequently increased total focal adhesion kinase (FAK), phosphorylated FAK (p-FAK), and phosphorylated extracellular signal kinase ERK1/2 (p-ERK1/2). Inhibition of integrin β1 and ERK1/2 activity effectively reduced the LA-AF-0-induced upregulation of p-FAK and osteogenic markers (OPN, OCN, and RUNX2), confirming the involvement of integrin β1-FAK-ERK1/2 signaling. Altogether, the overlay angle of aligned core-shell nanofiber membranes regulates the osteogenic differentiation of hBMSCs via integrin β1-FAK-ERK1/2 signaling, unveiling the effects of anisotropic fibers on bone tissue formation.
AB - Oriented fibers in bone lamellae are recognized for their contribution to the anisotropic mechanical performance of the cortical bone. While increasing evidence highlights that such oriented fibers also exhibit osteogenic induction to preosteoblasts, little is known about the effect of the overlay angle between lamellae on the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). In this study, bone lamellae-like fibrous matrices composed of aligned core-shell [core: polycaprolactone (PCL)/type I collagen (Col I) + shell: Col I] nanofibers were seeded with human BMSCs (hBMSCs) and then laid over on each other layer-by-layer (L-b-L) at selected angles (0 or 45°) to form three-dimensional (3D) constructs. Upon culture for 7 and 14 days, osteogenic differentiation of hBMSCs and mineralization within the lamellae assembly (LA) were characterized by real-time PCR, Western blot, immunofluorescent staining for osteogenic markers, and alizarin red staining for calcium deposition. Compared to those of random nanofibers (LA-RF) or aligned fibers with the overlay angle of 45° (LA-AF-45), the LA of aligned fibers at a 0° overlay angle (LA-AF-0) exhibited a noticeably higher osteogenic differentiation of hBMSCs, i.e., elevated gene expression of OPN, OCN, and RUNX2 and protein levels of ALP and RUNX2, while promoting mineral deposition as indicated by alizarin red staining and mechanical testing. Further analyses of hBMSCs within LA-AF-0 revealed an increase in both total and phosphorylated integrin β1, which subsequently increased total focal adhesion kinase (FAK), phosphorylated FAK (p-FAK), and phosphorylated extracellular signal kinase ERK1/2 (p-ERK1/2). Inhibition of integrin β1 and ERK1/2 activity effectively reduced the LA-AF-0-induced upregulation of p-FAK and osteogenic markers (OPN, OCN, and RUNX2), confirming the involvement of integrin β1-FAK-ERK1/2 signaling. Altogether, the overlay angle of aligned core-shell nanofiber membranes regulates the osteogenic differentiation of hBMSCs via integrin β1-FAK-ERK1/2 signaling, unveiling the effects of anisotropic fibers on bone tissue formation.
KW - core−shell nanofiber
KW - hBMSC
KW - integrin β1
KW - layer-by-layer stacking
KW - osteogenic differentiation
UR - http://www.scopus.com/inward/record.url?scp=85206449642&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85206449642&partnerID=8YFLogxK
U2 - 10.1021/acsami.4c12847
DO - 10.1021/acsami.4c12847
M3 - Article
C2 - 39389937
AN - SCOPUS:85206449642
SN - 1944-8244
VL - 16
SP - 56801
EP - 56814
JO - ACS Applied Materials and Interfaces
JF - ACS Applied Materials and Interfaces
IS - 42
ER -