TY - GEN
T1 - Reinforcement learning based adaptive rate control for delay-constrained communications over fading channels
AU - Li, Xiaochen
AU - He, Haibo
AU - Yao, Yu Dong
PY - 2010
Y1 - 2010
N2 - In this paper, we study efficient rate control schemes for delay sensitive communications over wireless fading channels based on reinforcement learning. Our objective is to find a rate control scheme that optimizes the link layer performance, specifically, maximizes the system throughput subject to a fixed bit error rate (BER) constraint and longterm average power constraint. We assume the buffer at the transmitter is finite; hence packet drop happens when the buffer is full. We assume the fading channel under our study can be modeled as a finite state Markov chain, however the transition probability of channel states is not known, and the only information available about the wireless channel is the instantaneous channel gain, which is estimated and fed back from receiver side to the transmitter side on the fly. In this paper, we use reinforcement learning approach to learn the time-varying channel environment and search for the optimal control policy on line. Simulation results show that starting from an arbitrary control policy, the learning agent gradually modifies its estimation about the system model and adjusts the control policy to its optimality.
AB - In this paper, we study efficient rate control schemes for delay sensitive communications over wireless fading channels based on reinforcement learning. Our objective is to find a rate control scheme that optimizes the link layer performance, specifically, maximizes the system throughput subject to a fixed bit error rate (BER) constraint and longterm average power constraint. We assume the buffer at the transmitter is finite; hence packet drop happens when the buffer is full. We assume the fading channel under our study can be modeled as a finite state Markov chain, however the transition probability of channel states is not known, and the only information available about the wireless channel is the instantaneous channel gain, which is estimated and fed back from receiver side to the transmitter side on the fly. In this paper, we use reinforcement learning approach to learn the time-varying channel environment and search for the optimal control policy on line. Simulation results show that starting from an arbitrary control policy, the learning agent gradually modifies its estimation about the system model and adjusts the control policy to its optimality.
UR - http://www.scopus.com/inward/record.url?scp=79959439650&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79959439650&partnerID=8YFLogxK
U2 - 10.1109/IJCNN.2010.5596697
DO - 10.1109/IJCNN.2010.5596697
M3 - Conference contribution
AN - SCOPUS:79959439650
SN - 9781424469178
T3 - Proceedings of the International Joint Conference on Neural Networks
BT - 2010 IEEE World Congress on Computational Intelligence, WCCI 2010 - 2010 International Joint Conference on Neural Networks, IJCNN 2010
T2 - 2010 6th IEEE World Congress on Computational Intelligence, WCCI 2010 - 2010 International Joint Conference on Neural Networks, IJCNN 2010
Y2 - 18 July 2010 through 23 July 2010
ER -