Remote sensing of surface and cloud properties in the Arctic from AVHRR measurements

W. Han, K. Stammes, Dan Lubin

Research output: Contribution to journalArticlepeer-review

37 Scopus citations

Abstract

Algorithms to retrieve cloud optical depth and effective radius in the Arctic using Advanced Very High Resolution Radiometer (AVHRR) data are developed, using a comprehensive radiative transfer model in which the atmosphere is coupled to the snowpack. For dark surfaces AVHRR channel 1 is used to derive visible cloud optical depth, while for bright surfaces AVHRR channel 2 is used. Independent inference of cloud effective radius from AVHRR channel 3 (3.75 μm) allows for derivation cloud liquid water path (proportional to the product of optical depth and effective radius), which is a fundamental parameter of the climate system. The algorithms are based on the recognition that the reflection function of clouds at a nonabsorbing wavelength (such as AVHRR channel 1) in the solar spectrum is primarily a function of cloud optical thickness, whereas the reflection function at a liquid water absorbing wavelength (such as AVHRR channel 3) is primarily a function of cloud particle size. For water clouds over highly reflecting surfaces (snow and ice), the reflectance in AVHRR channel 1 is insensitive to cloud optical depth due to the multiple reflections between cloud base and the underlying surface; channel 2 (0.85 μm) must be used instead for optical depth retrieval. Water clouds over tundra or ocean are more straightforward cases similar to those found at lower latitudes, and in these cases a comprehensive atmospheric radiative transfer model with a Lambertian surface under cloud is used. Thus, for water cloud over tundra and ocean, channel 1 is used for cloud optical depth retrieval. In all cases, channel 3 is used for independent retrieval of cloud droplet effective radius. The thermal component of channel 3 is estimated by making use of channel 4 (11 μm) and is subtracted from the total channel 3 radiance. Over clear-sky scenes, the bidirectional reflectance properties of snow are calculated directly by the coupled snowpack-atmosphere model. This results in greater overall accuracy in retrieved surface properties as compared with the simplified approach that uses a Lambertian approximation for the surface albedo. To test the physical soundness of the algorithms the authors have applied them to AVHRR data over Barrow, Alaska, from April to August 1992. Downwelling irradiances at the surface calculated using the retrieved cloud optical depth and effective radius are compared with field irradiance measurements, and encouraging agreement is found. The algorithms are also applied to three areas of about 100-km dimension around Barrow, each having a different underlying surface (ocean, tundra, snow).

Original languageEnglish
Pages (from-to)989-1012
Number of pages24
JournalJournal of Applied Meteorology
Volume38
Issue number7
DOIs
StatePublished - 1999

Fingerprint

Dive into the research topics of 'Remote sensing of surface and cloud properties in the Arctic from AVHRR measurements'. Together they form a unique fingerprint.

Cite this