Abstract
This paper considers the dynamic response and order-tuning of vibration absorbers fitted to a rotating flexible structure under traveling wave (TW) engine order excitation. Of specific interest is the extension of previous results on the so-called no-resonance zone, that is, a region in linear tuning parameter space in which the coupled structure/absorber system does not experience resonance over all rotation speeds. The no-resonance feature was shown to exist for cyclic rotating structures with one structural and one absorber degree of freedom (DOF) per sector. This work uses a higher-fidelity structural model to investigate the effects of higher modes on the cyclically-coupled system. It is shown that the no-resonance zone is replaced by a resonance-suppression zone in which one structural mode is suppressed, but higher-order resonances still exist with the addition of the absorbers. The results are general in the sense that one vibration mode can be eliminated using a set of identically-tuned absorbers on a rotating structure with arbitrarily many DOFs per sector.
Original language | English |
---|---|
Article number | 61016 |
Journal | Journal of Vibration and Acoustics, Transactions of the ASME |
Volume | 134 |
Issue number | 6 |
DOIs | |
State | Published - 2012 |