Robot-Supervised Learning for Object Segmentation

Victoria Florence, Jason J. Corso, Brent Griffin

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

9 Scopus citations

Abstract

To be effective in unstructured and changing environments, robots must learn to recognize new objects. Deep learning has enabled rapid progress for object detection and segmentation in computer vision; however, this progress comes at the price of human annotators labeling many training examples. This paper addresses the problem of extending learning-based segmentation methods to robotics applications where annotated training data is not available. Our method enables pixelwise segmentation of grasped objects. We factor the problem of segmenting the object from the background into two sub-problems: (1) segmenting the robot manipulator and object from the background and (2) segmenting the object from the manipulator. We propose a kinematics-based foreground segmentation technique to solve (1). To solve (2), we train a self-recognition network that segments the robot manipulator. We train this network without human supervision, leveraging our foreground segmentation technique from (1) to label a training set of images containing the robot manipulator without a grasped object. We demonstrate experimentally that our method outperforms state-of-the-art adaptable in-hand object segmentation. We also show that a training set composed of automatically labelled images of grasped objects improves segmentation performance on a test set of images of the same objects in the environment.

Original languageEnglish
Title of host publication2020 IEEE International Conference on Robotics and Automation, ICRA 2020
Pages1343-1349
Number of pages7
ISBN (Electronic)9781728173955
DOIs
StatePublished - May 2020
Event2020 IEEE International Conference on Robotics and Automation, ICRA 2020 - Paris, France
Duration: 31 May 202031 Aug 2020

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Conference

Conference2020 IEEE International Conference on Robotics and Automation, ICRA 2020
Country/TerritoryFrance
CityParis
Period31/05/2031/08/20

Fingerprint

Dive into the research topics of 'Robot-Supervised Learning for Object Segmentation'. Together they form a unique fingerprint.

Cite this