@inproceedings{9895aa1201054ae58214416683066407,
title = "Segmentation of 2D gel electrophoresis spots using a Markov random field",
abstract = "We propose a statistical model-based approach for the segmentation of fragments of DNA as a first step in the automation of the primarily manual process of comparing two or more images resulting from the Restriction Landmark Genomic Scanning (RLGS) method. These 2D gel electrophoresis images are the product of the separation of DNA into fragments that appear as spots on X-ray films. The goal is to find instances where a spot appears in one image and not in another since a missing spot can be correlated with a region of DNA that has been affected by a disease such as cancer. The entire comparison process is typically done manually, which is tedious and very error prone. We pose the problem as the labeling of each image pixel as either a spot or non-spot and use a Markov Random Field (MRF) model and simulated annealing for inference. Neighboring spot labels are then connected to form spot regions. The MRF based model was tested on actual 2D gel electrophoresis images.",
keywords = "Pattern recognition, Segmentation, Statistical methods",
author = "Hoeflich, {Christopher S.} and Corso, {Jason J.}",
year = "2009",
doi = "10.1117/12.811802",
language = "English",
isbn = "9780819475107",
series = "Progress in Biomedical Optics and Imaging - Proceedings of SPIE",
booktitle = "Medical Imaging 2009 - Image Processing",
note = "Medical Imaging 2009 - Image Processing ; Conference date: 08-02-2009 Through 10-02-2009",
}