Seizing Critical Learning Periods in Federated Learning

Gang Yan, Hao Wang, Jian Li

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

26 Scopus citations

Abstract

Federated learning (FL) is a popular technique to train machine learning (ML) models with decentralized data. Extensive works have studied the performance of the global model; however, it is still unclear how the training process affects the final test accuracy. Exacerbating this problem is the fact that FL executions differ significantly from traditional ML with heterogeneous data characteristics across clients, involving more hyperparameters. In this work, we show that the final test accuracy of FL is dramatically affected by the early phase of the training process, i.e., FL exhibits critical learning periods, in which small gradient errors irrecoverably impact the final test accuracy. To further explain this phenomenon, we generalize the trace of Fisher Information Matrix (FIM) to FL and define a new notion called FedFIM, a quantity reflecting the local curvature of each client from the beginning of training in FL. Our findings suggest that the initial learning phase plays a critical role in understanding the FL performance. This is in contrast to many existing works which generally do not connect the final accuracy of FL to the early phase training. Finally, seizing critical learning periods in FL is of independent interest and could be useful for other problems such as the choices of hyperparameters including but not limited to the number of client selected per round, batch size, so as to improve the performance of FL training and testing.

Original languageEnglish
Title of host publicationAAAI-22 Technical Tracks 8
Pages8788-8796
Number of pages9
ISBN (Electronic)1577358767, 9781577358763
DOIs
StatePublished - 30 Jun 2022
Event36th AAAI Conference on Artificial Intelligence, AAAI 2022 - Virtual, Online
Duration: 22 Feb 20221 Mar 2022

Publication series

NameProceedings of the 36th AAAI Conference on Artificial Intelligence, AAAI 2022
Volume36

Conference

Conference36th AAAI Conference on Artificial Intelligence, AAAI 2022
CityVirtual, Online
Period22/02/221/03/22

Fingerprint

Dive into the research topics of 'Seizing Critical Learning Periods in Federated Learning'. Together they form a unique fingerprint.

Cite this