TY - JOUR
T1 - Self-Defensive Antimicrobial Surfaces Using Polymyxin-Loaded Poly(styrene sulfonate) Microgels
AU - Xiao, Xixi
AU - Ji, Jingjing
AU - Wang, Haoyu
AU - Nangia, Shikha
AU - Wang, Hongjun
AU - Libera, Matthew
N1 - Publisher Copyright:
© 2022 American Chemical Society. All rights reserved.
PY - 2022/11/14
Y1 - 2022/11/14
N2 - Self-defensive antimicrobial surfaces are of interest because they can inhibit bacterial colonization while minimizing unnecessary antimicrobial release in the absence of a bacterial challenge. One self-defensive approach uses self-assembly to first deposit a submonolayer coating of polyelectrolyte microgels and subsequently load those microgels by complexation with small-molecule antimicrobials. The microgel/antimicrobial complexation strength is a key parameter that controls the ability of the antimicrobial both to remain sequestered within the microgels when exposed to medium and to release in response to a bacterial challenge. Here we study the relative complexation strengths of two FDA-approved cationic antibiotics─colistin (polymyxin E) and polymyxin B─with microgels of poly(styrene sulfonate) (PSS). These polymyxins are similar cyclic polypeptides with +5 charge at pH 7.4. However, polymyxin B substitutes an aromatic ring for a dimethyl moiety in colistin, and this aromaticity can influence complexation via πand hydrophobic interactions. Coarse-grained molecular dynamics shows that the free-energy change associated with polymyxin B/PSS complexation is more negative than that of colistin/PSS complexation. Experimentally, in situ optical microscopy of microgel deswelling shows that both antibiotics load quickly from low-ionic-strength phosphate buffer. The enhanced polymyxin B/PSS complexation strength is then manifested by subsequent exposure to flowing antibiotic-free buffer with varying NaCl concentration. Microgels loaded with polymyxin B remain stably deswollen to higher salt concentrations than do colistin/PSS microgels. Importantly, exposing loaded microgels to E. coli in nutrient-free-flowing phosphate buffer shows that bacteria are killed by physical contact with the loaded microgels consistent with the contact-transfer mechanism of self-defensiveness. In vitro culture experiments show that these same surfaces, nevertheless, support the adhesion, spreading and proliferation of human fetal osteoblasts. These findings suggest a pathway to create a self-defensive antimicrobial surface effective under physiological conditions based on the nonmetabolic bacteria-triggered release of FDA-approved antibiotics.
AB - Self-defensive antimicrobial surfaces are of interest because they can inhibit bacterial colonization while minimizing unnecessary antimicrobial release in the absence of a bacterial challenge. One self-defensive approach uses self-assembly to first deposit a submonolayer coating of polyelectrolyte microgels and subsequently load those microgels by complexation with small-molecule antimicrobials. The microgel/antimicrobial complexation strength is a key parameter that controls the ability of the antimicrobial both to remain sequestered within the microgels when exposed to medium and to release in response to a bacterial challenge. Here we study the relative complexation strengths of two FDA-approved cationic antibiotics─colistin (polymyxin E) and polymyxin B─with microgels of poly(styrene sulfonate) (PSS). These polymyxins are similar cyclic polypeptides with +5 charge at pH 7.4. However, polymyxin B substitutes an aromatic ring for a dimethyl moiety in colistin, and this aromaticity can influence complexation via πand hydrophobic interactions. Coarse-grained molecular dynamics shows that the free-energy change associated with polymyxin B/PSS complexation is more negative than that of colistin/PSS complexation. Experimentally, in situ optical microscopy of microgel deswelling shows that both antibiotics load quickly from low-ionic-strength phosphate buffer. The enhanced polymyxin B/PSS complexation strength is then manifested by subsequent exposure to flowing antibiotic-free buffer with varying NaCl concentration. Microgels loaded with polymyxin B remain stably deswollen to higher salt concentrations than do colistin/PSS microgels. Importantly, exposing loaded microgels to E. coli in nutrient-free-flowing phosphate buffer shows that bacteria are killed by physical contact with the loaded microgels consistent with the contact-transfer mechanism of self-defensiveness. In vitro culture experiments show that these same surfaces, nevertheless, support the adhesion, spreading and proliferation of human fetal osteoblasts. These findings suggest a pathway to create a self-defensive antimicrobial surface effective under physiological conditions based on the nonmetabolic bacteria-triggered release of FDA-approved antibiotics.
KW - antibiotic
KW - complexation
KW - contact transfer
KW - drug delivery
KW - infection
KW - microgel
UR - http://www.scopus.com/inward/record.url?scp=85140590814&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85140590814&partnerID=8YFLogxK
U2 - 10.1021/acsbiomaterials.2c00783
DO - 10.1021/acsbiomaterials.2c00783
M3 - Article
C2 - 36256955
AN - SCOPUS:85140590814
VL - 8
SP - 4827
EP - 4837
JO - ACS Biomaterials Science and Engineering
JF - ACS Biomaterials Science and Engineering
IS - 11
ER -