Semi-Supervised Nonlinear Distance Metric Learning via Forests of Max-Margin Cluster Hierarchies

David M. Johnson, Caiming Xiong, Jason J. Corso

Research output: Contribution to journalArticlepeer-review

26 Scopus citations

Abstract

Metric learning is a key problem for many data mining and machine learning applications, and has long been dominated by Mahalanobis methods. Recent advances in nonlinear metric learning have demonstrated the potential power of non-Mahalanobis distance functions, particularly tree-based functions. We propose a novel nonlinear metric learning method that uses an iterative, hierarchical variant of semi-supervised max-margin clustering to construct a forest of cluster hierarchies, where each individual hierarchy can be interpreted as a weak metric over the data. By introducing randomness during hierarchy training and combining the output of many of the resulting semi-random weak hierarchy metrics, we can obtain a powerful and robust nonlinear metric model. This method has two primary contributions: first, it is semi-supervised, incorporating information from both constrained and unconstrained points. Second, we take a relaxed approach to constraint satisfaction, allowing the method to satisfy different subsets of the constraints at different levels of the hierarchy rather than attempting to simultaneously satisfy all of them. This leads to a more robust learning algorithm. We compare our method to a number of state-of-the-art benchmarks on k-nearest neighbor classification, large-scale image retrieval and semi-supervised clustering problems, and find that our algorithm yields results comparable or superior to the state-of-the-art.

Original languageEnglish
Article number7350148
Pages (from-to)1035-1046
Number of pages12
JournalIEEE Transactions on Knowledge and Data Engineering
Volume28
Issue number4
DOIs
StatePublished - 1 Apr 2016

Keywords

  • Clustering
  • and association rules
  • classification
  • data mining
  • image/video retrieval
  • machine learning
  • similarity measures

Fingerprint

Dive into the research topics of 'Semi-Supervised Nonlinear Distance Metric Learning via Forests of Max-Margin Cluster Hierarchies'. Together they form a unique fingerprint.

Cite this