Shape memory alloys for micromembrane actuation

Patrick Surbled, Bruno Le Pioufle, E. H. Yang, Hiroyuki Fujita

Research output: Contribution to journalConference articlepeer-review

1 Scopus citations

Abstract

More and more technologies and new materials have been combined with silicon process technologies to enhance the performances of microsystems and extend the application fields. Among these technologies, the Shape Memory Alloys (SMA's) as thin films have been developed recently. They have been shown to induce high displacement and large force/mass ratio under low voltage. They can produce work output higher than can be provided with other kinds of actuators. However, such SMA actuators are not easy to make because specific annealing treatments or mechanical bias springs are needed to realize cyclic device operation. Moreover, adhesion problems of SMA thin films may occur during the annealing treatment. We have developed a simple fabrication process allowing a reliable operation principle of a micromembrane. The cyclic actuation is ensured by membrane thickness residual stresses that avoids the assembling steps. These membranes whose surface varies from 200 × 200 μ2 up to 2 × 2 mm2 have been successfully tested. As developed, they are very adapted to integration process of microelectronics and can be applied to many applications such as optical, fluidic devices, and especially for biomedical applications as SMA's are biocompatible.

Original languageEnglish
Pages (from-to)63-70
Number of pages8
JournalProceedings of SPIE - The International Society for Optical Engineering
Volume3825
DOIs
StatePublished - 1999
EventMicrosystems Metrology and Inspection - Munich, Germany
Duration: 14 Jun 1999 → …

Keywords

  • Microactuator
  • Micromachining
  • Micromembrane
  • Microsystems
  • Shape Memory Alloy

Fingerprint

Dive into the research topics of 'Shape memory alloys for micromembrane actuation'. Together they form a unique fingerprint.

Cite this