Single particle adhesion variability in additive manufacturing powders

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

The adhesion properties of powder particles could profoundly influence the quality of parts made by Additive Manufacturing (AM) processes. Accurate experimental characterization of adhesion and the spatial surface adhesion distribution of a single microparticle has been a significant challenge, due mainly to difficulties associated with the micro-scale handling/manipulation in a controllable manner and uncertainty in the nature of micro/nano-scale contacts. In current work, an approach for determining the spatial energy/adhesion distribution on the surfaces of single microparticles used in AM is introduced and demonstrated using Molybdenum (Mo) metal particles as model particles. Both ultrasonic base and Surface Acoustic Wave (SAW)-based excitation techniques coupled with laser Doppler vibrometry are utilized to excite and acquire the vibrational rocking motion and to drive the rolling motion of single Mo particles on a Silicon (Si) substrate in a controllable manner and, thereby determining the spatial adhesion distribution on the particle surfaces. Spatial surface energy distribution data of microparticles could be utilized in Discrete Element Method (DEM) simulations as a statistical input for simulating local powder bed dynamics with increased accuracy, which would potentially lead to more predictable AM processes.

Original languageEnglish
Pages (from-to)19-37
Number of pages19
JournalJournal of Adhesion
Volume97
Issue number1
DOIs
StatePublished - 2021

Keywords

  • Spatial adhesion mapping of single particles
  • metal microparticles in additive manufacturing
  • non-contact characterization
  • single powder particles adhesion characterization

Fingerprint

Dive into the research topics of 'Single particle adhesion variability in additive manufacturing powders'. Together they form a unique fingerprint.

Cite this