Spectral signatures of coral reefs: Features from space

Dan Lubin, Wei Li, Phillip Dustan, Charles H. Mazel, Knut Stamnes

Research output: Contribution to journalArticlepeer-review

119 Scopus citations

Abstract

The spectral signatures of coral reefs and related scenes, as they would be measured above the Earth's atmosphere, are calculated using a coupled atmosphere-ocean discrete ordinates radiative transfer model. Actual measured reflectance spectra from field work are used as input data. Four coral species are considered, to survey the natural range of coral reflectance: Montastrea cavernosa, Acropora palmata, Dichocoenia stokesii, and Siderastrea siderea. Four noncoral objects associated with reefs are also considered: sand, coralline algae, green macroalgae, and algal turf. The reflectance spectra as would be measured at the top of the atmosphere are substantially different from the in situ spectra, due to differential attenuation by the water column and, most importantly, by atmospheric Rayleigh scattering. The result is that many of the spectral features that can be used to distinguish coral species from their surroundings or from one another, which have been used successfully with surface or aircraft data, would be obscured in spectral measurements from a spacecraft. However, above the atmosphere, the radiance contrasts between most coral species' and most brighter noncoral objects remain noticeable for water column depths up to 20 m. Over many spectral intervals, the reflectance from dark coral under shallow water is smaller than that of deep water. The maximum top-of-atmosphere radiances, and maximum contrasts between scene types, occur between 400 nm and 600 nm. This study supports the conclusions of recent satellite reef mapping exercises, suggesting that coral reef identification should be feasible using satellite remote sensing, but that detailed reef mapping (e.g., species identification) may be more difficult.

Original languageEnglish
Pages (from-to)127-137
Number of pages11
JournalRemote Sensing of Environment
Volume75
Issue number1
DOIs
StatePublished - 2001

Fingerprint

Dive into the research topics of 'Spectral signatures of coral reefs: Features from space'. Together they form a unique fingerprint.

Cite this