TY - JOUR
T1 - Spectral signatures of coral reefs
T2 - Features from space
AU - Lubin, Dan
AU - Li, Wei
AU - Dustan, Phillip
AU - Mazel, Charles H.
AU - Stamnes, Knut
PY - 2001
Y1 - 2001
N2 - The spectral signatures of coral reefs and related scenes, as they would be measured above the Earth's atmosphere, are calculated using a coupled atmosphere-ocean discrete ordinates radiative transfer model. Actual measured reflectance spectra from field work are used as input data. Four coral species are considered, to survey the natural range of coral reflectance: Montastrea cavernosa, Acropora palmata, Dichocoenia stokesii, and Siderastrea siderea. Four noncoral objects associated with reefs are also considered: sand, coralline algae, green macroalgae, and algal turf. The reflectance spectra as would be measured at the top of the atmosphere are substantially different from the in situ spectra, due to differential attenuation by the water column and, most importantly, by atmospheric Rayleigh scattering. The result is that many of the spectral features that can be used to distinguish coral species from their surroundings or from one another, which have been used successfully with surface or aircraft data, would be obscured in spectral measurements from a spacecraft. However, above the atmosphere, the radiance contrasts between most coral species' and most brighter noncoral objects remain noticeable for water column depths up to 20 m. Over many spectral intervals, the reflectance from dark coral under shallow water is smaller than that of deep water. The maximum top-of-atmosphere radiances, and maximum contrasts between scene types, occur between 400 nm and 600 nm. This study supports the conclusions of recent satellite reef mapping exercises, suggesting that coral reef identification should be feasible using satellite remote sensing, but that detailed reef mapping (e.g., species identification) may be more difficult.
AB - The spectral signatures of coral reefs and related scenes, as they would be measured above the Earth's atmosphere, are calculated using a coupled atmosphere-ocean discrete ordinates radiative transfer model. Actual measured reflectance spectra from field work are used as input data. Four coral species are considered, to survey the natural range of coral reflectance: Montastrea cavernosa, Acropora palmata, Dichocoenia stokesii, and Siderastrea siderea. Four noncoral objects associated with reefs are also considered: sand, coralline algae, green macroalgae, and algal turf. The reflectance spectra as would be measured at the top of the atmosphere are substantially different from the in situ spectra, due to differential attenuation by the water column and, most importantly, by atmospheric Rayleigh scattering. The result is that many of the spectral features that can be used to distinguish coral species from their surroundings or from one another, which have been used successfully with surface or aircraft data, would be obscured in spectral measurements from a spacecraft. However, above the atmosphere, the radiance contrasts between most coral species' and most brighter noncoral objects remain noticeable for water column depths up to 20 m. Over many spectral intervals, the reflectance from dark coral under shallow water is smaller than that of deep water. The maximum top-of-atmosphere radiances, and maximum contrasts between scene types, occur between 400 nm and 600 nm. This study supports the conclusions of recent satellite reef mapping exercises, suggesting that coral reef identification should be feasible using satellite remote sensing, but that detailed reef mapping (e.g., species identification) may be more difficult.
UR - http://www.scopus.com/inward/record.url?scp=0035125033&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035125033&partnerID=8YFLogxK
U2 - 10.1016/S0034-4257(00)00161-9
DO - 10.1016/S0034-4257(00)00161-9
M3 - Article
AN - SCOPUS:0035125033
SN - 0034-4257
VL - 75
SP - 127
EP - 137
JO - Remote Sensing of Environment
JF - Remote Sensing of Environment
IS - 1
ER -