TY - GEN
T1 - Squeeze flow rheometry for rheological characterization of energetic formulations
AU - Kalyon, Dilhan
AU - Tang, Hansong
AU - Gevgilili, Halil
AU - Demir, Cenker
AU - Kowalczyk, James E.
PY - 2006
Y1 - 2006
N2 - The rheological characterization and the determination of the parameters describing the shear viscosity and wall slip behavior of energetic materials is a challenge. Some of the conventional rheometers including various rotational rheometers are not capable of deforming typical energetic formulations with their gel binders and high degrees of particulate fill. Other available rheometers are not conducive to rheological characterization of energetic formulations in the vicinity of the manufacturing operation with the data to be used immediately for quality control. Squeeze flow provides significant advantages in safety of materials handling and exposure as well as providing easy data generation for routine quality control of energetic formulations being processed. Here the basic hardware is reviewed along with the methods for the analysis of raw data to determine the parameters of the shear viscosity and the wall slip of energetic formulations. It is suggested that appropriate analytical and numerical analyses can indeed provide the basic wherewithal necessary for the solution of the inverse problem of squeeze flows to characterize the shear viscosity and the wall slip parameters provided that the issues of uniqueness and stability are properly addressed.
AB - The rheological characterization and the determination of the parameters describing the shear viscosity and wall slip behavior of energetic materials is a challenge. Some of the conventional rheometers including various rotational rheometers are not capable of deforming typical energetic formulations with their gel binders and high degrees of particulate fill. Other available rheometers are not conducive to rheological characterization of energetic formulations in the vicinity of the manufacturing operation with the data to be used immediately for quality control. Squeeze flow provides significant advantages in safety of materials handling and exposure as well as providing easy data generation for routine quality control of energetic formulations being processed. Here the basic hardware is reviewed along with the methods for the analysis of raw data to determine the parameters of the shear viscosity and the wall slip of energetic formulations. It is suggested that appropriate analytical and numerical analyses can indeed provide the basic wherewithal necessary for the solution of the inverse problem of squeeze flows to characterize the shear viscosity and the wall slip parameters provided that the issues of uniqueness and stability are properly addressed.
UR - http://www.scopus.com/inward/record.url?scp=80053745534&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80053745534&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:80053745534
SN - 081691012X
SN - 9780816910120
T3 - AIChE Annual Meeting, Conference Proceedings
BT - 2006 AIChE Annual Meeting
T2 - 2006 AIChE Annual Meeting
Y2 - 12 November 2006 through 17 November 2006
ER -