TY - GEN
T1 - Study of component mode synthesis methods in a rotor-stator interaction case
AU - Batailly, Alain
AU - Legrand, Mathias
AU - Cartraud, Patrice
AU - Pierre, Christophe
AU - Lombard, Jean Pierre
PY - 2008
Y1 - 2008
N2 - The study of rotor-stator interactions between blade-tips and outer casings through direct contact in modern turbomachines is very time-consuming if the classical finite element method is used. In order to improve the knowledge over these interaction phenomena, faster methods have to be applied. The construction of reduced-order models using component mode synthesis methods generally allows for dramatic increase in computational efficiency. Two of these methods, namely a fixed interface method and a free interface methods are considered in an original manner to reduce the size of a realistic two-dimensional model. They are then compared in a very specific contact case-study. The equations of motion are solved using an explicit time integration scheme with the Lagrange multiplier method where friction is accounted for. The primary goal of the present study is to investigate the general behavior of such approaches in the presence of contact nonlinearities. It will be shown that in our contact case, a good accuracy can be obtained from a reduced models with very limited number of modes.
AB - The study of rotor-stator interactions between blade-tips and outer casings through direct contact in modern turbomachines is very time-consuming if the classical finite element method is used. In order to improve the knowledge over these interaction phenomena, faster methods have to be applied. The construction of reduced-order models using component mode synthesis methods generally allows for dramatic increase in computational efficiency. Two of these methods, namely a fixed interface method and a free interface methods are considered in an original manner to reduce the size of a realistic two-dimensional model. They are then compared in a very specific contact case-study. The equations of motion are solved using an explicit time integration scheme with the Lagrange multiplier method where friction is accounted for. The primary goal of the present study is to investigate the general behavior of such approaches in the presence of contact nonlinearities. It will be shown that in our contact case, a good accuracy can be obtained from a reduced models with very limited number of modes.
UR - http://www.scopus.com/inward/record.url?scp=44849106758&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=44849106758&partnerID=8YFLogxK
U2 - 10.1115/DETC2007-34781
DO - 10.1115/DETC2007-34781
M3 - Conference contribution
AN - SCOPUS:44849106758
SN - 0791848027
SN - 9780791848029
SN - 0791848027
SN - 9780791848029
T3 - 2007 Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC2007
SP - 1235
EP - 1242
BT - 2007 Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC2007
T2 - 21st Biennial Conference on Mechanical Vibration and Noise, presented at - 2007 ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2007
Y2 - 4 September 2007 through 7 September 2007
ER -