THREE-DIMENSIONAL FINITE ELEMENT MODELING OF FLIP CHIP PACKAGES UNDER THERMAL LOADING

Qizhou Yao, Jianmin Qu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

In this study, both two-dimensional and three-dimensional finite element analyses were used to study the stress distribution in and deflection of the flip chip assembly under thermal loading. It is found that the three-dimensional results compared favorably with experimental measurements, while the two-dimensional results consistently overestimate both stresses and deflection. Among the two-dimensional models, plane stress assumption seems to yield results closer to the full three-dimensional predictions. Furthermore, three-dimensional models were used to investigate the effect of printed wiring board size on the overall deflection of the flip-chip assembly. This size effect of the printed wiring board has significant implications on the design of multi-chip modules. The results indicate that a square array placement pattern is preferable to a staggered array for multiple chip modules in order to reduce mechanical interaction between chips. For square arrays, such mechanical interaction between chips can be neglected when the minimum distance between adjacent chips is more than 2 times the chip size.

Original languageEnglish
Title of host publicationManufacturing Science and Engineering
Pages779-787
Number of pages9
ISBN (Electronic)9780791816066
DOIs
StatePublished - 1998
EventASME 1998 International Mechanical Engineering Congress and Exposition, IMECE 1998 - Anaheim, United States
Duration: 15 Nov 199820 Nov 1998

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
Volume1998-R

Conference

ConferenceASME 1998 International Mechanical Engineering Congress and Exposition, IMECE 1998
Country/TerritoryUnited States
CityAnaheim
Period15/11/9820/11/98

Fingerprint

Dive into the research topics of 'THREE-DIMENSIONAL FINITE ELEMENT MODELING OF FLIP CHIP PACKAGES UNDER THERMAL LOADING'. Together they form a unique fingerprint.

Cite this