Toward autonomous mapping and exploration for mobile robots through deep supervised learning

Shi Bai, Fanfei Chen, Brendan Englot

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

46 Scopus citations

Abstract

We consider an autonomous mapping and exploration problem in which a range-sensing mobile robot is guided by an information-based controller through an a priori unknown environment, choosing to collect its next measurement at the location estimated to yield the maximum information gain within its current field of view. We propose a novel and time-efficient approach to predict the most informative sensing action using a deep neural network. After training the deep neural network on a series of thousands of randomly-generated 'dungeon maps', the predicted optimal sensing action can be computed in constant time, with prospects for appealing scalability in the testing phase to higher dimensional systems. We evaluated the performance of deep neural networks on the autonomous exploration of two-dimensional workspaces, comparing several different neural networks that were selected due to their success in recent ImageNet challenges. Our computational results demonstrate that the proposed method provides high efficiency as well as accuracy in selecting informative sensing actions that support autonomous mobile robot exploration.

Original languageEnglish
Title of host publicationIROS 2017 - IEEE/RSJ International Conference on Intelligent Robots and Systems
Pages2379-2384
Number of pages6
ISBN (Electronic)9781538626825
DOIs
StatePublished - 13 Dec 2017
Event2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2017 - Vancouver, Canada
Duration: 24 Sep 201728 Sep 2017

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
Volume2017-September
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2017
Country/TerritoryCanada
CityVancouver
Period24/09/1728/09/17

Fingerprint

Dive into the research topics of 'Toward autonomous mapping and exploration for mobile robots through deep supervised learning'. Together they form a unique fingerprint.

Cite this